
s. aU~v~umtv~w~; [&AEPO~r] ~~~$. mTFinal
5 Dec 89 to 5 Dec 90

4.IwLEAUff Ada Compiler Validation Summary Report: Tartan L5M UBMER

Laboratories Incorporated, Tartan Ada VMS/C30, Version 2.2,

VAX Station 3100 (host) to 320c30 on TI Application Board (targe)

891205T1. 10260

LAUTHO(AS)
IABG-AVF
Ottobrunn, FEDERAL REPUBLIC OF GERMANY

. PEWORM1G ORWJIATION
IABG-AVF, Industrieanlagen-Betriebsgeselschaft RPOAT ME

Dept. SZT
Einsteinstrasse 20 AVF-IABG-058
D-8012 Ottobrunn
FEDERAL REPUBLIC OF-GERMANY

0. N M MM AGENCY NAM(S) ANDAWRES(ES) 10. SPORSORI C W U AGENCY

Ada Joint Program Office FUPOATU ER

United States Department of Defense
Washington, D.C. 20301-3081

11. SUPFLE1ENTARY NOTES

12m. rISTRJTKtIAVAILASLITATY tNEMErN 1. iown noN cm

Approved for public release; distribution unlimited.

13. AUSTRACT &AidmM wom)

Tartan Laboratories Incorporated,Tartan Ada VMS/C30 Version 2.2,Ottobrunn
West Germany,

VAX Station 3100 under VAX/VMS 5.1 B (Host & Target), ACVCI.1O-. V TIC
ELECTE

" 2S

14.OULECTTERMI Ada programming language, Ada Compiler Validation is. BUER OF RGES

Summary Report, Ada Compiler Validation Capability, Validation

Testing, Ada Validation Office, Ada Validation Facility, ANSI/MIL- w.PRIMEWE

STD-1815A, Ada Joint Program Office
17.GURMY GLALSVCATI If. NuELRII CLASIIJAT [S. U__UMnYCLA5TWN 2. IAON OF Ahhi-ACT

UNCLASSIFIED UNCASSFIE
_YNCLAN 7 -- 0

IM 7

AVF Control Number: AVF-IABG-058

Ada COMPILER
VALIDATION SUMMARY REPORT:

Certificate Number: #89120511.10260
VfARTAN LABORATORIES INCORPORATED/

Tartan Ada VMS/C30/ Version 2.2
VAX Station 3100 to 320C30 on TI Application Board

Completion of On-Site Testing:
5 December 1989

Prepared By:
IABG mbH, Abt SZT
Einsteinstr 20
D8012 Ottobrunn
West Germany

Prepared For:
Ada Joint Program Office

United States Department of Defense
Washington DC 20301-3081

Ada Compiler Validation Summary Report:

Compiler Name: Tartan Ada VMS/C30 Version 2.2

Certificate Number: #89120511.10260

Host: VAX Station 3100 under VAX/VMS 5.1B

Target: 320C30 on TI Application Board

Testing completed 5 December 1989 using ACVC 1.10.

This report has been reviewed and is approved.

Dr. S. eilbrunner
IABG mbH, Abt SZT
Einsteinstr 20
D8012 Ottobrunn
West Germany

Institute fov fense Analyses
Alexandria VA 22311

Icopy

AProgram Office
Dr. John Solomond
Director
Department of Defense NTIS GIRA&I
Washington DC 20301 DTIC TAB 0

Unannounced 0
Ju~tirbeation

By
Distr',bution/

Avalabillitv Ccdes
kiaiq ani/or

Dist SOC~a1J

TABLE OF CONTENTS

CHAPTER 1 INTRODUCTION 1

1.1 PURPOSE OF THIS VALIDATION SUMMARY REPORT 1
1.2 USE OF THIS VALIDATION SUMMARY REPORT 2
1.3 REFERENCES 3
1.4 DEFINITION OF TERMS 3
1.5 ACVC TEST CLASSES 4

CHAPTER 2 CONFIGURATION INFORMATION 7

2.1 CONFIGURATION TESTED 7
2.2 IMPLEMENTATION CHARACTERISTICS 8

CHAPTER 3 TEST INFORMATION 13

3.1 TEST RESULTS13
3.2 SUMHARY OF TEST RESULTS BY CLASS13
3.3 SUMMARY OF TEST RESULTS BY CHAPTER 14
3.4 WITHDRAWN TESTS 14
3.5 INAPPLICABLE TESTS 14
3.6 TEST, PROCESSING, AND EVALUATION MODIFICATIONS 18
3.7 ADDITIONAL TESTING INFORMATION
3.7.1 Prevalidation 19
3.7.2 Test Method19
3.7.3 Test Site 20

APPENDIX A DECLARATION OF CONFORMANCE

APPENDIX B APPENDIX F OF THE Ada STANDARD

APPENDIX C TEST PARAMETERS

APPENDIX D VITHDRAWN TESTS

APPENDIX E COMPILER AND LINKER OPTIONS

INTRODUCTION

CHAPTER 1

INTRODUCTION

This Validation Summary Report (VSR) describes the extent to which a
specific Ada compiler conforms to the Ada Standard, ANSI/MIL-STD-1815A.
This report explains all technical terms used within it and thoroughly
reports the results 9J_. ing this compiler using the Ada Compiler
Validation Capability, (ACVC). --An Ada compiler must be implemented
according to the Ada Standard, and any implementation-dependent features
must conform to the requirements of the Ada Standard. The Ada Standard
must be implemented in its entirety, and nothing can be implemented that is
not in the Standard.

Even though all validated Ada compilers conform to the Ada Standard, it
must be understood that some differences do exist between implementations.
The Ada Standard permits some implementation dependencies--for example, the
maximum length of identifiers or the maximum values of integer types.
Other differences between compilers result from the characteristics of
particular operating systems, hardware, or implementation strategies. All
the dependencies obse ved during the process of testing this compiler are
4u-anthis report.

The information in this report is derived from the test results produced
during validation testing. The validation process includes submitting a
suite of standardized tests, the ACVC, as inputs to an Ada compiler and
evaluating the results. The purpose of validating is to ensure conformity
of the compiler to the Ad Standard by testing that the compiler properly
implements legal langua e constructs and that it identifies and rejects
illegal language construc s. The testing also identifies behavior that is
implementation dependent but is permitted by the Ada Standard. Six
classes of tests are used These tests are designed to perform checks at
compile time, at link tim , and durjng execution.

1.1 PURPOSE OF THIS VALIDATION SUMMARY REPORT

This VSR documents the results of the validation testing performed on an
Ada compiler. Testing was carried out for the following purposes:

INTRODUCTION

To attempt to identify any language constructs supported by the
compiler that do not conform to the Ada Standard

To attempt to identify any language constructs not supported by
the compiler but required by the Ada Standard

To determine that the implementation-dependent behavior is allowed
by the Ada Standard

Testing of this compiler was conducted by IABG mbH, Abt SZT according to
procedures established by the Ada Joint Program Office and administered by
the Ada Validation Organization (AVO).

1.2 USE OF THIS VALIDATION SUMMARY REPORT

Consistent with the national laws of the originating country, the AVO may
make full and free public disclosure of this report. In the United States,
this is provided in accordance with the "Freedom of Information Act"
(5 U.S.C. #552). The results of this validation apply only to the
computers, operating systems, and compiler versions identified in this
report.

The organizations represented on the signature page of this report do not
represent or warrant that all statements set forth in this report are
accurate and complete, or that the subject compiler has no nonconformities
to the Ada Standard other than those presented. Copies of this report are
available to the public from:

Ada Information Clearinghouse
Ada Joint Program Office
OUSDRE
The Pentagon, Rm 3D-139 (Fern Street)
Washington DC 20301-3081

or from:

IABG mbH, Abt SZT
Einsteinstr 20
D8012 Ottobrunn

Questions regarding this report or the validation test results should be
directed to the AVF listed above or to:

Ada Validation Organization
Institute for Defense Analyses
1801 North Beauregard Street
Alexandria VA 22311

2

INTRODUCTION

1.3 REFERENCES

1. Reference Manual for the Ada Programming Language,
ANSI/MIL-STD-1815A, February 1983 and ISO 8652-1987.

2. Ada Compiler Validation Procedures and Guidelines, Ada Joint
Program Office, 1 January 1987.

3. Ada Compiler Validation Capability Implementers' Guide, SofTech,
Inc., December 1986.

4. Ada Compiler Validation Capability User's Guide, December 1986.

1.4 DEFINITION OF TERMS

ACVC The Ada Compiler Validation Capability. The set of Ada
programs that tests the conformity of an Ada compiler to the
Ada programming language.

Ada An Ada Commentary contains all information relevant to the
Commentary point addressed by a comment on the Ada Standard. These

comments are given a unique identification number having the
form AI-ddddd.

Ada Standard ANSI/MIL-STD-1815A, February 1983 and ISO 8652-1987.

Applicant The agency requesting validation.

AVF The Ada Validation Facility. The AVY is responsible for
conducting compiler validations according to procedures
contained in the Ada Compiler Validation Procedures and
Guidelines.

AVO The Ada Validation Organization. The AVO has oversight
authority over all AVF practices for the purpose of
maintaining a uniform process for validation of Ada
compilers. The AVO provides administrative and technical
support for Ada validations to ensure consistent practices.

Compiler A processor for the Ada language. In the context of this
report, a compiler is any language processor, including
cross-compilers, translators, and interpreters.

Failed test An ACVC test for which the compiler generates a result that
demonstrates nonconformity to the Ada Standard.

Host The computer on which the compiler resides.

3

INTRODUCTION

Inapplicable An ACVC test that uses features of the language that a
test compiler is not required to support or may legitimately

support in a way other than the one expected by the test.

Passed test An ACVC test for which a compiler generates the expected
result.

Target The computer which executes the code generated by the
compiler.

Test A program that checks a compiler's conformity regarding a
particular feature or a combination of features to the Ada
Standard. In the context of this report, the term is used to
designate a single test, which may comprise one or more
files.

Withdrawn An ACVC test found to be incorrect and not used to check
test conformity to the Ada Standard. A test may be incorrect

because it has an invalid test objective, fails to meet its
test objective, or contains illegal or erroneous use of the
language.

1.5 ACVC TEST CLASSES

Conformity to the Ada Standard is measured using the ACVC. The ACVC
contains both legal and illegal Ada programs structured into six test
classes: A, B, C, D, E, and L. The first letter of a test name identifies
the class to which it belongs. Class A, C, D, and E tests are executable,
and special program units are used to report their results during
execution. Class B tests are expected to produce compilation errors.
Class L tests are expected to produce errors because of the way in which a
program library is used at link time.

Class A tests ensure the successful compilation and execution of legal Ada
programs with certain language constructs which cannot be verified at run
time. There are no explicit program components in a Class A test to check
semantics. For example, a Class A test checks that reserved words of
another language (other than those already reserved in the Ada language)
are not treated as reserved words by an Ada compiler. A Class A test is
passed if no errors are detected at compile time and the program executes
to produce a PASSED message.

Class B tests check that a compiler detects illegal language usage.
Class B tests are not executable. Each test in this class is compiled and
the resulting compilation listing is examined to verify that every syntax
or semantic error in the test is detected. A Class B test is passed if
every illegal construct that it contains is detected by the compiler.

4

INTRODUCTION

Class C tests check the run time system to ensure that legal Ada programs
can be correctly compiled and executed. Each Class C test is self-checking
and produces a PASSED, FAILED, or NOT APPLICABLE message indicating the
result when it is executed.

Class D tests check the compilation and execution capacities of a compiler.
Since there are no capacity requirements placed on a compiler by the Ada
Standard for some parameters--for example, the number of identifiers
permitted in a compilation or the number of units in a library--a compiler
may refuse to compile a Class D test and still be a conforming compiler.
Therefore, if a Class D test fails to compile because the capacity of the
compiler is exceeded, the test is classified as inapplicable. If a Class D
test compiles successfully, it is self-checking and produces a PASSED or
FAILED message during execution.

Class E tests are expected to execute successfully and check
implementation-dependent options and resolutions of ambiguities in the Ada
Standard. Each Class E test is self-checking and produces a NOT
APPLICABLE, PASSED, or FAILED message when it is compiled and executed.
However, the Ada Standard permits an implementation to reject programs
containing some features addressed by Class E tests during compilation.
Therefore, a Class E test is passed by a compiler if it is compiled
successfully and executes to produce a PASSED message, or if it is rejected
by the compiler for an allowable reason.

Class L tests check that incomplete or illegal Ada programs involving
multiple, separately compiled units are detected and not allowed to
execute. Class L tests are compiled separately and execution is attempted.
A Class L test passes if it is rejected at link time--that is, an attempt
to execute the main program must generate an error message before any
declarations in the main program or any units referenced by the main
program are elaborated. In some cases, an implementation may legitimately
detect errors during compilation of the test.

Two library units, the package REPORT and the procedure CHECK FILE, support
the self-checking features of the executable tests. The package REPORT
provides the mechanism by which executable tests report PASSED, FAILED, or
NOT APPLICABLE results. It also provides a set of identity functions used
to defeat some compiler optimizations allowed by the Ada Standard that
would circumvent a test objective. The procedure CHECKFILE is used to
check the contents of text files written by some of the Class C tests for
Chapter 14 of the Ada Standard. The operation of REPORT and CHECK-FILE is
checked by a set of executable tests. These tests produce messages that
are examined to verify that the units are operating correctly. If these
units are not operating correctly, then the validation is not attempted.

The text of each test in the ACVC follows conventions that are intended to
ensure that the tests are reasonably portable without modification. For
example, the tests make use of only the basic set of 55 characters, contain
lines with a maximum length of 72 characters, use small numeric values, and
tests. However, some tests contain values that require the test to be

INTRODUCTION

customized according to implementation-specific values--for example, an
illegal file name. A list of the values used for this validation is
provided in Appendix C.

A compiler must correctly process each of the tests in the suite and
demonstrate conformity to the Ada Standard by either meeting the pass
criteria given for the test or by showing that the test is inapplicable to
the implementation. The applicability of a test to an implementation is
considered each time the implementation is validated. A test that is
inapplicable for one validation is not necessarily inapplicable for a
subsequent validation. Any test that was determined to contain an illegal
language construct or an erroneous language construct is withdrawn from the
ACVC and, therefore, is not used in testing a compiler. The tests
withdrawn at the time of this validation are given in Appendix D.

CONFIGURATION INFORMATION

CHAPTER 2

CONFIGURATION INFORMATION

2.1 CONFIGURATION TESTED

The candidate compilation system for this validation was tested under the
following configuration:

Compiler: Tartan Ada VMS/C30 Version 2.2

ACVC Version: 1.10

Certificate Number: #89120511.10260

Host Computer:

Machine: VAX Station 3100

Operating System: VAX/VMS 5.1B

Memory Size: 8 MB

Target Computer:

Machine: 320C30 on TI Application Board

Operating System: bare machine

Memory Size: 512K x 32 bit words

CONFIGURATION INFORMATION

2.2 IMPLEMENTATION CHARACTERISTICS

One of the purposes of validating compilers is to determine the behavior of
a compiler in those areas of the Ada Standard that permit implementations
to differ. Class D and E tests specifically check for such implementation
differences. However, tests in other classes also characterize an
implementation. The tests demonstrate the following characteristics:

a. Capacities.

1) The compiler correctly processes a compilation containing
723 variables in the same declarative part. (See test
D29002K.)

2) The compiler correctly processes tests containing loop
statements nested to 65 levels. (See tests D55A03A..H (8
tests).)

3) The compiler correctly processes tests containing block
statements nested to 65 levels. (See test D56001B.)

4) The compiler correctly processes tests containing recursive
procedures separately compiled as subunits nested to 10
levels. (See tests D64005E..G (3 tests).)

b. Predefined types.

1) This implementation supports the additional predefined type
LONG FLOAT in the package STANDARD. (See tests B86001T..Z (7
tests).)

c. Expression evaluation.

The order in which expressions are evaluated and the time at which
constraints are checked are not defined by the language. While
the ACVC tests do not specifically attempt to determine the order
of evaluation of expressions, test results indicate the following:

1) None of the default initialization expressions for record
components are evaluated before any value is
checked for membership in a component's subtype. (See test
C32117A.)

2) Assignments for subtypes are performed with the same precision
as the base type. (See test C35712B.)

CONFIGURATION INFORMATION

3) This implementation uses no extra bits for extra precision
and uses all extra bits for extra range. (See test C35903A.)

4) NUMERICERROR is raised when an integer literal operand in a
comparison or membership test is outside the range of the base
type. (See test C45232A.)

5) No exception is raised when a literal operand in a fixed-
point comparison or membership test is outside the range of
the base type. (See test C45252A.)

6) Underflow is not gradual. (See tests C45524A..Z (26
tests).)

d. Rounding.

The method by which values are rounded in type conversions is not
defined by the language. While the ACVC tests do not specifically
attempt to determine the method of rounding, the test results
indicate the following:

1) The method used for rounding to integer is round towards
positive infinity . (See tests C46012A..Z (26 tests).)

2) The method used for rounding to longest integer is round
towards positive infinity. (See tests C46012A..Z (26 tests).)

3) The method used for rounding to integer in static universal
real expressions is round towards positive infinity. (See
test C4AOI4A.)

e. Array types.

An implementation is allowed to raise NUMERICERROR or
CONSTRAINTERROR for an array having a 'LENGTH that exceeds
STANDARD.INTEGER'LAST and/or SYSTEM.MAXINT. For this
implementation:

1) Declaration of an array type or subtype declaratiot, with more
than SYSTEM.MAXINT components raises NUMERIC-ERROR for
one dimensional array types and two dimensional array types ,
and no exception for one dimensional array subtypes and two
dimensional array subtypes. (See test C36003A.)

2) NUMERICERROR is raised when an array type with
TNTEGER-LAST + 2 components is declared. (See test
C36202A.)

CONFIGURATION INFORM ATIOrJ

3) NUMERIC_.ERROR is raised when an array type with
SYSTEM.MAXINT + 2 components is declared. (See test
C36202B.)

4) A packed BOOLEAN array having a 'LENGTH exceeding INTEGER'LAST
raises NUMERIC-ERROR when the array type is declared. (See
test C52103X.)

5) A packed two-dimensional BOOLEAN array with more than
INTEGER'LAST components raises NUMERICERROR when the array
type is declared and exceeds INTEGER'LAST. (See test
C52104Y.)

6) In assigning one-dimensional array types, the expression is
not evaluated in its entirety before CONSTRAINT-ERROR is
raised when checking whether the expression's subtype is
compatible with the target's subtype. (See test C52013A.)

7) In assigning two-dimensional array types, the expression is
not evaluated in its entirety before CONSTRAINT-ERROR is
raised when checking whether the expression's subtype is
compatible with the target's subtype. (See test C52013A.)

8) A null array with one dimension of length greater
than INTEG ('LAST may raise NUMERICERROR or CONSTRAINT-ERROR
either when declared or assigned. Alternatively, an implemen-
tation may accept the declaration. However, lengths must
match in array slice assignments. This implementation raises
NUMERICERROR when the array type is declared. (See
test E52103Y.)

f. Discriminated types.

1) In assigning record types with discriminants, the expression
is evaluated in its entirety before CONSTRAINT-ERROR is raised
when checking whether the expression's subtype is compatible
with the target's subtype. (See test C52013A.)

g. Aggregates.

1) In the evaluation of a multi-dimensional aggregate, the test
results indicate that all choices are evaluated before
checking against the index type. (See tests C43207A and
C43207B.)

2) In the evaluation of an aggregate containing subaggregates,
not all choices are evaluated before being checked for
identical bounds. (See test E43212B.)

10

CONFIGURATION INFORMATION

3) CONSTRAINTERROR is raised after all choices are
evaluated when a bound in a non-null range of a non-null
aggregate does not belong to an index subtype. (See test
E43211B.)

h. Pragmas.

1) The pragma INLINE is supported for functions and
procedures. (See tests LA3004A..B (2 tests), EA3OO4C..D (2
tests), and CA3004E..F (2 tests).)

i. Generics.

This compiler enforces the following two rules concerning
declarations and proper bodies which are individual compilation
units:

o generic bodies must be compiled and completed before their
instantiation.

o recompilation of a generic body or any of its transitive
subunits makes all units obsolete which instantiate that
generic body.

These rules are enforced whether the compilation units are in
separate compilation files or not. A1408 and A1506 allow this
behaviour.

1) Generic specifications and bodies can be compiled
in separate compilations. (See tests CAIO12A, CA2009C,
CA2009F, BC3204C, and BC3205D.)

2) Generic subprogram declarations and bodies can be
compiled in separate compilations. (See tests CA1O2A and
CA2009F.)

3) Generic library subprogram specifications and bodies can be
compiled in separate compilations. (See test CAlOl2A.)

4) Generic non-library package bodies as subunits can
be compiled in separate compilations. (See test CA2009C.)

5) Generic non-library subprogram bodies can be
compiled in separate compilations from their stubs. (See test
CA2009F.)

6) Generic unit bodies and their subunits can be

compiled in separate compilations. (See test CA3OllA.)

11

CONFIGURATION INFORMATION

7) Generic package declarations and bodies can be
compiled in separate compilations. (See tests CA2009C,
BC3204C, and BC3205D.)

8) Generic library package specifications and bodies can be
compiled in separate compilations. (See tests
BC3204C and BC3205D.)

9) Generic unit bodies and their subunits can be
compiled in separate compilations. (See test CA3O1lA.)

j. Input and output.

1) The package SEQUENTIAL_1O can be instantiated with
unconstrained array types and record types with
discriminants without defaults. (See tests AE2101C, EE2201D,
and EE220E.)

2) The package DIRECTIO can be instantiated with
unconstrained array types and record types with
discriminants without defaults. (See tests AE21O1H, EE2401D,
and EE2401G.)

3) The director, AJPO, has determined (AI-00332) that every call
to OPEN and CREATE must raise USE ERROR or NAME-ERROR if file
input/output is not supported. This implementation exhibits
this behavior for SEQUENTIALTO, DIRECTTO, and TEXTIO.

12

TEST INFORMATION

CHAPTER 3

TEST INFORMATION

3.1 TEST RESULTS

Version 1.10 of the ACVC comprises 3717 tests. When this compiler was
tested, 44 tests had been withdrawn because of test errors. The AVF
determined that 619 tests were inapplicable to this implementation.
All inapplicable tests were processed during validation testing except for
285 executable tests that use floating-point precision exceeding
that supported by the implementation, and for 238 executable tests
that use file operations not supported by the implementation.
Modifications to the code, processing, or grading for 81 tests were
required to successfully demonstrate the test objective. (See section
3.6.)

The AVF concludes that the testing results demonstrate acceptable
conformity to the Ada Standard.

3.2 SUMMARY OF TEST RESULTS BY CLASS
RESULT TEST CLASS TOTAL

A B C D E L

Passed 129 1128 1719 16 16 46 3054

Inapplicable 0 10 596 1 12 0 619

Withdrawn 1 2 35 0 6 0 44

TOTAL 130 1140 2350 17 34 46 3717

13

TEST INFORMATION

3.3 SUMMARY OF TEST RESULTS BY CHAPTER

RESULT CHAPTER TOTAL
2 3 4 5 6 7 8 9 10 11 12 13 14

Passed 192 547 485 242 171 99 159 332 133 36 252 330 76 3054

N/A 20 102 195 6 1 0 7 0 4 0 0 39 245 619

Wdrn 1 1 0 0 0 0 0 2 0 0 1 35 4 44

TOTAL 213 650 680 248 172 99 166 334 137 36 253 404 325 3717

3.4 WITHDRAWN TESTS

The following 44 tests were withdrawn from ACVC Version 1.10
at the time of this validation:

E28005C A39005G B97102E C97116A BC3009B CD2A62D
CD2A63A CD2A63B CD2A63C CD2A63D CD2A66A CD2A66B
CD2A66C CD2A66D CD2A73A CD2A73B CD2A73C CD2A73D
CD2A76A CD2A76B CD2A76C CD2A76D CD2A8IG CD2A83G
CD2A84N CD2A84M CD50110 CD2B15C CD7205C CD2D11B
CD5007B ED7004B ED7005C ED7005D ED7006C ED7006D
CD7105A CD7203B CD7204B CD7205D CE21071 CE3111C
CE3301A CE3411B

See Appendix D for the reason that each of these tests was withdrawn.

3.5 INAPPLICABLE TESTS

Some tests do not apply to all compilers because they make use of features
that a compiler is not required by the Ada Standard to support. Others may
depend on the result of another test that is either inapplicable or
withdrawn. The applicability of a test to an implementation is considered
each time a validation is attempted. A test that is inapplicable for one
validation attempt is not necessarily inapplicable for a subsequent
attempt. For this validation attempt, 619 tests were inapplicable for the
reasons indicated:

a. The following 285 tests are not applicable because they have
floating-point type declarations requiring more digits than
SYSTEM.MAXDIGITS:

C24113F..Y (20 tests) C35705F..Y (20 tests)
C35706F..Y (20 tests) C35707F..Y (20 tests)

TEST INFORMATION

C35708F..Y (20 tests) C35802F..Z (21 tests)
C45241F..Y (20 tests) C45321F..Y (20 tests)
C45421F..Y (20 tests) C45521F..Z (21 tests)
C45524F..Z (21 tests) C45621F..Z (21 tests)
C45641F..Y (20 tests) C46012F..Z (21 tests)

b. C35702A and B86001T are not applicable because this implementation
supports no predefined type SHORT-FLOAT.

c. The following 16 tests are not applicable because this
implementation does not support a predefined type SHORT-INTEGER:

C45231B C45304B C45502B C45503B C45504B
C45504E C45611B C45613B C45614B C45631B
C45632B B52004E C55BO7B B55B09D B86001V
CD7101E

d. The following 16 tests are not applicable because this
implementation does not support a predefined type LONG_INTEGER:

C45231C C45304C C45502C C45503C C45504C
C45504F C45611C C45613C C45614C C45631C
C45632C 852004D C55B07A 855B09C B86001W
CD71O1F

e. C45531M..P (4 tests) and C45532M..P (4 tests) are not applicable
because the value of SYSTEM.MAXMANTISSA is less than 32.

f. D64005G is not applicable because this implementation does not
support nesting 17 levels of recursive procedure calls.

g. C86001F is not applicable because, for this implementation, the
package TEXT_10 is dependent upon package SYSTEM. This test re-
compiles package SYSTEM, making package TEXT_10, and hence
package REPORT, obsolete.

h. B86001X, C45231D, and CD7IO1G are not applicable because this
implementation supports no predefined integer type with a name
other than INTEGER, LONGINTEGER, or SHORT-INTEGER.

i. B86001Y is not applicable because this implementation supports no
predefined fixed-point type other than DURATION.

j. B86001Z is not applicable because this implementation supports no
predefined floating-point type with a name other than FLOAT,
LONG-FLOAT, or SHORT-FLOAT.

k. CA2009A, CA2009C, CA2009F and CA2009D are not applicable because
this compiler creates dependencies between generic bodies, and
units that instantiate them (see section 2.2i for rules and
restrictions concerning generics).

TEST INFORMATION

1. CD1009C, CD2A41A..E (5 tests), and CD2A42A..J (10 tests) are not
applicable because this implementation imposes restrictions on
'SIZE length clauses for floating point types.

m. CD2A61E, CD2A61G, and CD2A61I are not applicable because this
implementation imposes restrictions on 'SIZE length clauses for
array types.

n. CD2A84B..I (8 tests) and CD2A84K..L (2 tests) are not applicable
because this implementation imposes restrictions on 'SIZE length
clauses for access types.

o. CD2A91A..E (5 tests) are not applicable because 'SIZE length
clauses for task types are not supported.

p. CD2B1IG is not applicable because 'STORAGE SIZE representation
clauses are not supported for access types where the designated
type is a task type.

q. CD2BI5B is not applicable because a collection size larger than
the size specified was allocated.

r. The following 238 tests are inapplicable because sequential, text,
and direct access files are not supported:

CE2102A..C (3 tests) CE2102G..H (2 tests)
CE2102K CE2102N..Y (12 tests)
CE2103C..D (2 tests) CE21O4A..D (4 tests)
CE2105A..B (2 tests) CE2106A..B (2 tests)
CE2107A..H (8 tests) CE2107L
CE2108A..B (2 tests) CE2108C..H (6 tests)
CE21O9A..C (3 tests) CE211OA..D (4 tests)
CE2111A..I (9 tests) CE2115A..B (2 tests)
CE2201A..C (3 tests) CE2201F..N (9 tests)
CE2204A..D (4 tests) CE2205A
CE2208B CE2401A..C (3 tests)
CE2401E..F (2 tests) CE2401H..L (5 tests)
CE2404A..B (2 tests) CE2405B
CE2406A CE2407A..B (2 tests)
CE2408A..B (2 tests) CE2409A..B (2 tests)
CE2410A..B (2 tests) CE2411A
CE3102A..B (2 tests) EE3102C
CE3102F..H (3 tests) CE3102J..K (2 tests)
CE3103A CE3104A..C (3 tests)
CE3107B CE3108A..B (2 tests)
CE3109A CE3110A
CE3111A..B (2 tests) CE3111D..E (2 tests)
CE3112A..D (4 tests) CE3114A..B (2 tests)
CE3115A EE3203A

16

TEST INFORMATION

CE3208A EE3301B
CE3302A CE3305A
CE3402A EE3402B
CE3402C..D (2 tests) CE3403A..C (3 tests)
CE3403E..F (2 tests) CE3404B..D (3 tests)
CE3405A EE3405B
CE3405C..D (2 tests) CE3406A..D (4 tests)
CE3407A..C (3 tests) CE3408A..C (3 tests)
CE3409A CE3409C..E (3 tests)
EE3409F CE3410A
CE3410C..E (3 tests) EE341OF
CE3411A CE3411C
CE3412A EE3412C
CE3413A CE3413C
CE3602A..D (4 tests) CE3603A
CE3604A..B (2 tests) CE3605A..E (5 tests)
CE3606A..B (2 tests) CE3704A..F (6 tests)
CE3704M..O (3 tests) CE3706D
CE3706F..G (2 tests) CE3804A..P (16 tests)
CE3805A..B (2 tests) CE3806A..B (2 tests)
CE3806D..E (2 tests) CE3806G..H (2 tests)
CE3905A..C (3 tests) CE3905L
CE3906A..C (3 tests) CE3906E..F (2 tests)

These tests were not processed because their inapplicability can
be deduced from the result of other tests.

s. Tests CE2103A..B (2 tests) and CE3107A raise USE ERROR although
NAMEERROR is expected. These tests report FAILED but they were
graded not applicable because this implementation does not support
permanent files.

t. EE2201D, EE2201E, EE240ID, EE2401G are inapplicable because
sequential, text, and direct access files are not supported.

17

TEST INFORMATION

3.6 TEST, PROCESSING, AND EVALUATION MODIFICATIONS

It is expected that some tests will require modifications of code,
processing, or evaluation in order to compensate for legitimate
implementation behavior. Modifications are made by the AVF in cases where
legitimate implementation behavior prevents the successful completion of an
(otherwise) applicable test. Examples of such modifications include:
adding a length clause to alter the default size of a collection; splitting
a Class B test into subtests so that all errors are detected; and
confirming that messages produced by an executable test demonstrate
conforming behavior that was not anticipated by the test (such as re'sing
one exception instead of another).

Modifications were required for 79 tests.

a. The following tests were split because syntax errors at one point
resulted in the compiler not detecting other errors in the test:

B22003A B24007A B24009A B25002B B32201A B34005N
B34005T B34007H B35701A B36171A B36201A B37101A
B37102A B37201A B37202A B37203A B37302A B38003A
B38003B B38008A B38008B B38009A B38009B B38103A
B38103B B38103C B38103D B38103E B43202C B44002A
B48002A B48002B B48002D B48002E B48002G B48003E
B49003A B49005A B49006A B49007A B49009A B4A010C
B54A20A B54A25A B58002A B58002B B59001A B59001C
B59001I B62006C B67001A B67001B 867001C B67001D
B74103E B74104A B85007C B91005A B95003A B95007B
B95031A B95074E BC1002A BCI109A BC1109C BC1206A
BC2001E BC3005B BC3009C BD5005B

b. For the two tests BC3204C and BC3205D, the compilation order was
changed to

BC3204C0, C1, C2, C3M, C4, C5, C6, C3M
and

BC3205DO, D2, DIM

respectively. This change was necessary because of the compiler's
rules for separately compiled generic units (see section 2.2i for
rules and restrictions concerning generics). When processed in
this order the expected error messages were produced for BC3204C3M
and BC3205DIM.

c. The two tests BC3204D and BC3205C consist of several compilation
units each. The compilation units for the main procedures are
near the beginning of the files. When processing these files
unchanged, a link error is reported instead of the expected
compiled generic units. Therefore, the compilation files were
modified by appending copies of the main procedures to the end of

18

TEST INFORINATION

these files. When processed, the expected error messages were
generated by the compiler.

d. Tests C3§005A, CD7004C, CD7005E and CD7006E wrongly presume an
order of elaboration of the library unit bodies. These tests were
modified to include a PRAGMA ELABORATE (REPORT);

e. Test E28002B checks that predefined or unrecognized pragmas may
have arguments involving overloaded identifiers without enough
contextual information to resolve the overloading. It also checks
the correct processing of pragma LIST. For this implementation,
pragma LIST is only recognised if the compilation file is compiled
without errors or warnings. Hence, the test was modified to
demonstrate the correct processing of pragma LIST.

For this implementation, the required support package specification,
SPPRT13SP, was rewritten to provide constant values for the function names.

3.7 ADDITIONAL TESTING INFORMATION

3.7.1 Prevalidation

Prior to validation, a set of test results for ACVC Version 1.10 produced
by the Tartan Ada Sun/C30 Version 2.2 compiler was submitted to the AVF
by the applicant for review. Analysis of these results demonstrated that
the compiler successfully passed all applicable tests, and the
compiler exhibited the expected behavior on all inapplicable tests. The
applicant certified that testing results for the computing system of this
validation would be identical to the ones submitted for review prior to
validation.

3.7.2 Test Method

Testing of the Tartan Ada VMS/C30 Version 2.2 compiler using ACVC
Version 1.10 was conducted by IABG on the premises of TARTAN. The
configuration in which the testing was performed is described by the
following designations of hardware and software components:

Host Computer:
Machine: VAX Station-3100
Operating System: VAX/VMS 5.1B
Memory Size: 8 MB

Target Computer:
Machine: 320C30 on TI Application Board
Operating System: bare machine
Memory Size: 512K x 32 bit words

TEST INFORMATION

Compiler:
Tartan Ada VMS/C30 Version 2.2

The original ACVC was customized prior to the validation visit in order to
remove all withdrawn tests, inapplicable I/O tests and tests requiring
unsupported floating point precisions. Tests that make use of
implementation specific values were also customized. Tests requiring
modifications during the prevalidation testing were modified accordingly.

A tape containing the customized ACVC was read by the host computer.

After the test files were loaded to disk, the full set of tests was
compiled and linked. All executable tests were transferred via an RS232
line to the target computer where they were run. Results were transferred
to the host computer in the same way. The results were then transferred via
Ethernet to a SUN 3/60, where they were evaluated. Archiving was done on
the host computer.

The compiler was tested using command scripts provided by TARTAN
LABORATORIES INCORPORATED and reviewed by the validation team. The
compiler was tested using no option settings. All chapter B tests were
compiled with the listing option on (i.e. /LIST). The linker was called
with the command

ALBC30 LINK <testname>

The compiler was called with the command

ADAC30 <testname>

3.7.3 Test Site

Testing was conducted at TARTAN LABORATORIES INCORPORATED, Pittsburgh and
was completed on 5 December 1989.

20

DECLARATION OF CONFORIMANCE

APPENDIX A

DECLARATION OF CONFORMANCE

TARTAN LABORATORIES INCORPORATED has submitted the following
Declaration of Conformance concerning the Tartan Ada VMS/C30
Version 2.2 compiler.

DECLARATION OF CONFORMANCZ

Compiler Implementor: Tartan Laboratories Incorporated
Ada Validation Facility: IABG mbH, Dept. SZT
Ada Compiler Validation Capability (ACVC) Version: 1.10

Base Configuration

Base Compiler Name: Tartan Ada VMS/C30
Base Compiler Version: Version 2.2
Host Computer: VAX Station 3100 under VAX/VMS V5.1B
Target Computer: 320C30 on TI Application Board (bare target)

Implementor's Declaration

I, the undersigned, representing Tartan Laboratories Incorporated, have
implemented no deliberate extensions to the Ada Language Standard
ANSI/MIL-STD-1815A in the compiler(s) listed in this declaration. I
declare that Tartan Laboratories Incorporated is the owner of record of
the Ada Language compiler(s) listed above and, as such, is responsible
for maintaining said compiler(s) in conformance to ANSI/MIL-STD-1815A.
All certificates and registrations for Ada Language compiler(s) listed
in this declaraton shall be made only in the owner's corporate name.

/ Date: 7 - C

Tartan Laboratories Incorporated
D. L. Evans, President

Owner's Declaration

I, the undersigned, representing Tartan Laboratories Incorporated, take
full responsibility for implementation and maintenance of the Ada com-
piler(s) listed above, and agree to the public disclosure of the final
Validation Summary Report. I declare that all of the Ada Language
compilers listed, and their host/target performance, are in compliance
with the Ada Language Standard ANSI/MIL-STD-1815A.

z / Date: 7 -
Tartan' aboratories Incorporated
D. L. Evans, President

APPEDI7 -7 F THF Ada STANDARD

APPErDIX B

APPENDIX F OF THE Ada STANDARD

The only allowed implementation dependencies corres-
pond to implementation-dependent pragmas, to certain machine-
dependent conventions as mentioned in chapter 13 of the Ada Stan-
dard, and to certain allowed restrictions on representation
clauses. The implementation-dependent characteristics of the
Tartan Ada vMS/C30 Version 2.2 compiler, as described in this
Appendix, are provided by TARTAN LABORATORIES INCORPORATED.
Unless specifically noted otherwise, references in this appendix
are to compiler documentation and not to this report.
Implementation-specific portions of the package STANDARD, which
are not a part of Appendix F, are:

package STANDARD is

type INTEGER is range -6_147_483_648 .. 2_147_483_647;

type FLOAT is digits 6 range -16#0.1000_00#E+33
16#0.FFFF FFE+32;

type LONGFLOAT is digits 9 range
-16#0.1000 0000 0#E+33 .. 160.FFFFFFFF_OQE+32;

type DURATION is delta 0.0001 range -86400.0 .. 86400.0;

end STANDARD;

Chapter 5
Appendix F to MIL-STD-1815A

This chapter contains the required Appendix F to .Military Standard, Ada Programming Language,
ANSI/MIL-STD-1815A (American National Standards Institute. Inc., February 17, 1983).

5.1. PRAGMAS

5.1.1. Predefined Pragmas
This section summarizes the effects of and rustrictions on predefined pragmas.

" Access collections are not subject to automatic storage reclamation so pragma CONTROLLED has no effect.
Space deallocated by means of UNCHECKEDDEALLOCATION will be reused by the allocation of new
objects.

* Pragma ELABORATE is supported.

" Pragma INLINE is supported.
" Pragma INTERFACE is now supported. The language_name is ignored by the compiler; that is, the

standard Ada calling convention is used for every call to a subprogram to which this pragma is applied.

" Pragma LIST is supported but has the intended effect only if the command qualifier LIST=ALWAYS was
supplied for compilation, and the listing generated was not due to the presence of errors and/or warnings.

* Pragma MEMORYSIZE is accepted but no value other than that specified in Package SYSTEM (Section
5.3) is allowed.

" Pragma OPTIMIZE is supported except when at the outer level (that is, in a package specification or
body).

* Pragma PACK is fully supported.

* Pragma PAGE is supported but has the intended effect only if the command qualifier LI ST=ALWAYS was
supplied for compilation, and the listing generated was not due to the presence of errors and/or warnings.

" Pragma PRIORITY is supported.

" Pragma STORAGEUNIT is accepted but no value other than that specified in Package SYSTEM (Section
5.3) is allowed.

" SHARED is not supported. No warning is issued if it is supplied.

" Pragma SUPPRESS is supported.

" Pragma SYSTEM_. NAME is accepted but no value other than that specified in Package SYSTEM (Section
5.3) is allowed.

5.1.2. Implementation-Defined Pragmas
Implementation-defined pragmas provided by Tartan are described in the following sections.

5.1

USER MANUAL FOR TARTAN ADA VMS C30

5.1.2.1. Pragma LINKAGE_NAME

The pragma LINKAGE _NAME associates an Ada entity with a string that is meaningful externally; e.g., to a
linkage editor. It takes the orm

pragma LINKAGENAME (Ada-simple-name, string-constant)
The Ada-simple-name must be the name of an Ada entity declared in a package specification. This entity must be
one that has a runtime representation; e.g., a subprogram, exception or object. It may not be a named number or
string constant. The pragma must appear after the declaration of the entity in the same package specification.

The effect of the pragma is to cause the string-constant to be used in the generated assembly code as an
external name for the associated Ada entity. It is the responsibility of the user to guarantee that this string
constant is meaningful to the linkage editor and that nor illegal linkname clashes arise.

This pragma has no effect when applied to a library subprogram or to a renames declaration; in the latter case,
no warning message is given.

When determining the maximum allowable length for the external linkage name, keep in mind that the
compiler will generate names for elaboration flags simply by appending the suffix #GOTO. Therefore, the
external linkage name has 5 fewer significant characters than the lower limit of other tools that need to process
the name (e.g., 40 in the case of the Tartan Linker).

5.12.2. Pragma FOREIGNBODY

In addition to Pragma INTERFACE, Tartan Ada supplies Pragma FOREIGN-BODY as a way to access
subprograms in other languages.

Unlike Pragma INTERFACE, Pragma FOREIGNBODY allows access to objects and exceptions (in addition
to subprograms) to and from other languages.

Some restrictions on Pragma FOREIGNBODY that are not applicable to Pragma INTERFACE are:

* Pragma FOREIGN_.BODY must appear in a top-level non-generic package specification.
" All objects, exceptions and subprograms in such a package must be supplied by a foreign object module.
" Types may not be declared in such a package.

Use of the pragma FOREIGN BODY dictates that all subprograms, exceptions and objects in the package are
provided by means of a foreign object module. In order to successfully link a program including a foreign body,
the object module for that body must be provided to the library using the ALBC30 FOREIGNBODY command
described in Section 4.7.

The pragma is of the form:

pragma FOREIGNBODY (languagename C, elaboration routinename])

The parameter language name is a string intended to allow the compiler to identify the calling convention used
by the foreign module (but this functionality is not yet in operation). Currently, the programmer must ensure that
the calling convention and data representation of the foreign body procedures are compatible with those used by
the Tartan Ada compiler. Subprograms called by tasks should be reentrant.

The optional elaborationroutinename string argument provides a means to initialize the package. The
routine specified as the elaboration routine name, which will be called for the elaboration of this package body,
must be a global routine in the object module provided by the user.

A specification that uses this pragma may contain only subprogram declarations, object decarations that use
an unconstrained type mark, and number declarations. Pragmas may also appear in the package. The type mark
for an object cannot be a task type, and the object declaration must not have an initial value expression. The
pragma must be given prior to any declarations within the package specification. If the pragma is not located
before the first declaration, or any restriction on the declarations is violated, the pragma is ignored and a warning
is generated.

The foreign body is entirely responsible for initializing objects declared in a package utilizing pragma
FOREIGNBODY. In particular, the user should be aware that the implicit initializations described in LRM 3.2.1
are not done by the compiler. (These implicit initializations are associated with objects of access types, certain
record types and composite types containing components of the preceding kinds of types.)

5-2

APPENDIX F TO -MIL-STD- 1815A

Pragma LINKAGE NAME should be used for all declarations in the package, including any declarations in a
nested package specification to be sure that there are no conflicting link names. If pragma LINKAGE_NAME is
not used, the cross-reference qualifier, /CROSS REFERENCE, (see Section 3.2) should be used when invoking
the compiler and the resulting cross-reference table of linknames inspected to identify the linknames assigned by
the compiler and determine that there are no conflicting linknames (see also Section 3.3).

In the following example, we want to call a function plmn which computes polynomials and is written in C.

package MATHFUNCS is
pragma FOREIGNBODY ("C");
function POLYNOMIAL (X: INTEGER) return INTEGER;

--Ada spec matching the C routine
pragma LINKAGE NAME (POLYNOMIAL, "plmn");

--Force compiler to use name "plmn" when referring to this
-- function

end MATH FUNCS;

with MATHFUNCS; use MATHFUNCS
procedure MAIN is
X:INTEGER :- POLYNOMIAL(10);

-- Will generate a call to "plmn"
begin ...

end MAIN;
To compile, link and run the above program, you do the following steps:

1. Compile MATH_FUNCS

2. Compile MAIN

3. Obtain an object module (e.g. math. TOF) containing the compiled code for plmn.

4. Issue the command

ALBC30 FOREIGNBODY math funcs MATH.TOF

5. Issue the command

ALBC30 LINK MAIN

Without Step 4, an attempt to link will produce an error message informing you of a missing package body for
MATHFUNCS.

Using an Ada body from another Ada program library. The user may compile a body written in Ada for a
specification into the library, regardless of the language specified in the pragma contained in the specification.
This capability is useful for rapid prototyping, where an Ada package may serve to provide a simulated response
for the functionality that a foreign body may eventually produce. It also allows the user to replace a foreign body
with an Ada body without recompiling the specification.

The user can either compile an Ada body into the library, or use the command ALBC30 FOREIGNBODY

(See Section 4.7) to use an Ada body from another library. The Ada body from another library must have been
compiled under an identical specification. The pragma LINKAGE NAME must have been applied to all entities
declared in the specification. The only way to specify the linknamefor the elaboration routine of an Ada body is
with the pragma FOREIGNBODY.

Using Calls to the Operating System. In some cases, the foreign code is actually supplied by the operating
system (in the case of system calls) or by runtime libraries for other programming languages such as C. Such
calls may be made using a dummy procedure to supply a file specification to the ALBC30 FOREIGNBODY
command. You need a dummy .TOF file which may be obtained in a number of ways. One way is to compile
the procedure

procedure DUMMY is
begin

null;
end;

Then, use the library command

5-3

USER MANUAL FOR TARTAN ADA VMS C30

ALBC30 FOREIGN pkg DUMMY.TOF

where pkg is the name of the package that contains the pragma LINKAGENAME for the operating system call.
For example to use the VMS system service LIBSGET VM in the program TEST:

Package MEMORY is
pragma FOREIGN BODY ("ASM");
procedure GETVIRTUAL MEMORY(MEM:INTEGER);
pragma LINKAGENAME (GETVIRTUALMEMORY, "LIB$GET VM ");

end MEMORY;

with MEMORY;
procedure TEST is

begin
GETVIRTUALMEMORY(MEM);

end TEST;

Obtin the file dummy. TOF. Then use
ALBC30 FOREIGN pkg DUMMY. TOF

to include the body for the system call in the library.

5.2. IMPLEMENTA TION-DEPENDENT A TTRIBUTES
No implementauon-dependent attributes are currently supported.

5.3. SPECIFICATION OF THE PACKAGE SYSTEM

The parameter values specified for the T1320C30 target in package SYSTEM [LRM 13.7.1 and Annex C] are:
package SYSTEM is

type ADDRESS is new INTEGER;
type NAME is (T1320C30);
SYSTEM NAME constant NAME :- T1320C30;
STORAGE UNIT constant : 32;
MEMORY _IZE constant : 16 777 216;
MAX INT constant : 2 147_T83_647;
MIN-INT constant : -MAX INT - 1;
MAXDIGITS constant :, 9;

MAX MANTISSA : constant :-31;
FINE DELTA : constant :, 2#1.0#e-31;
TICK : constant :- 0.0001;
subtype PRIORITY is INTEGER range 10 .. 100;
DEFAULTPRIORITY : constant PRIORITY : PRIORITY'FIRST;
RUNTIMEERROR : exception;

end SYSTEM;

5.4. RESTRICTIONS ON REPRESENTATION CLAUSES
The following sections explain the basic restrictions for representation specifications followed by additional

restrictions applying to specific kinds of clauses.

5-4

APPENDIX FTO .IL-STD-1815A

5.4.1. Basic Restiction
The basic restriction on representation specifications [LRM 13.1] that they may be given only for types

declared in terms of a type definition, excluding a generic type def inition (LRM 12.1) and a
private type definition (LRM 7.4). Any representation clause in violation of these rules is not obeyed
by the compiler, a diagnostic message is issued.

Further restrictons are explained in the following sections. Any representation clauses violating those restric-
tions are not obeyed but cause a diagnostic message to be issued.

5.4.2. Length Clauses
Length clauses [LRM 13.2] are, in general, supported. For details, refer to the following sections.

5.4.2.1. Size Specif'ations for Types

The rules and restrictions for size specifications applied to types of various classes are described below.
The following principle rules apply:

1. The size is specified in bits and must be given by a static expression.

2. The specified size is taken as a mandate to store objects of the type in the given size wherever feasible.
No attempt is made to store values of the type in a smaller size, even if possible. The following rules
apply with regard to feasibility:

An object that is not a component of a composite object is allocated with a size and alignment that
is referable on the target machine; that is, no attempt is made to create objects of non-referable size
on the stack. If such stack compression is desired, it can be achieved by the user by combining
multiple stack variables in a composite object, for example

type My_Enum is (A,B);
for Myenum'size use 1;
V,W: My_enum; -- will occupy two storage

-- units on the stack
-- (if allocated at all)

type rec is record
V,W: My_enum;

end record;
pragma Pack(rec);
0: rec; -- will occupy one storage unit

* A formal parameter of the type is sized according to calling conventions rather than size
specifications of the type. Appropriate size conversions upon parameter passing take place
automatically and are transparent to the user.

• Adjacent bits to an object that is a component of a composite object, but whose size is
non-referable, may be affected by assignments to the object, unless these bits are occupied by other
components of the composite object; that is, whenever possible, a component of non-referable size
is made referable.

In all cases, the compiler generates correct code for all operations on objects of the type, even if they are
stored with differing representational size in different contexts.

Note: A size specification cannot be used to force a certain size in value operations of the type: for
example

type my_int is range 0..65535;
for my int'size use 16; -- o.k.
A,B: my_int;

.A + B... -- this operation will generally be
-- executed on 32-bit values

5-5

USER MANUAL FOR TARTAN ADA VMS C30

3. A size specification for a type specifies the size for objects of this type and of all its subtypes. For
components of composite types, whose subtype would allow a shorter representation of the component,
no attempt is made to take advantage of such shorter representations. In contrast, for types without a
length clause, such components may be represented in a lesser number of bits than the number of bits
required to represent all values of the type. Thus, in the example

type MYINT is range 0..2**15-1;
for MY tNT'SIZE use 16; -- (1)
subtype SMALLMY INT is MYINT range 0..255;
type R is record

X: SMA',LMY INT;

end record;
the component R.X will occupy 16 bits. In the absence of the length clause at (1), R.X may be represented
in 8 bits.

For the following type classes, the size specification must coincide with the default size chosen by the compiler
for the type:

" access types
" floating-point types
° task types

No useful effect can be achieved by using size specifications for these types.

5.4.2.2. Size Specificadon for Scalar Types

The specified size must accommodate all possible values of the type including the value 0 (even if 0 is not in
the range of the values of the type). For numeric types with negative values the number of bits must account for
the sign bit. No skewing of the representation is attempted. Thus

type my int is range 100..101;

requires at least 7 bits, although it has only two values, while
type my_int is range -101..-100;

requires 8 bits to account for the sign bit.
A size specification for a real type does not affect the accuracy of operations on the type. Such influence

should be exerted via the accuracydefinition of the type (LRM 3.5.7, 3.5.9).
A size specification for a scalar type may not specify a size larger than the largest operation size supported by

the target architecture for the respective class of values of the type.

5.4.24. Size Specificadon for Array Types

A size specification for an array type must be large enough to accommodate all components of the array under
the densest packing strategy explained below in adherence to any alignment constraints on the component type
(see Section 5.4.7).

The size of the component type cannot be influenced by a length clause for an array. Within the limits of
representing all possible values of the component subtype (but not necessarily of its type), the representation of
components may, however, be reduced to the minimum number of bits, unless the component type carries a size
specification.

If there is a size specification for the component type, but not for the array type, the component size is
rounded up to a referable size, unless pragma PACK is given. This applies even to boolean types or other types
that require only a single bit for the representation of all values.

5-6

APPENDIX F TO MIL-STD-1815A

5.42.4. Size Specificaion for Record Types

A size specification for a record type does not influence the default type mapping of a record type. The size
must be at least as large as the number of bits determined by type mapping. Influence over packing of com-
ponents can be exerted by means of (partial) record representation clauses or by Pragma PACK.

Neither the size of component types, nor the representation of component subtypes can be influenced by a
length clause for a record.

The only implementation-dependent components allocated by Tartan Ada in records contain dope information
for arrays whose bounds depend on discriminants of the record or contain relative offsets of components within a
record layout for record components of dynamic size. These implementation-dependent components cannot be
named or sized by the user.

A size specification cannot be applied to a record type with components of dynamically determined size.
Note: Size specifications for records can be used only to widen the representation accomplished by padding at

the beginning or end of the record. Any narrowing of the representation over default type mapping must be
accomplished by representation clauses or pragma PACK.

5.42.5. Specification of Collection Sizes

The specification of a collection size causes the collection to be allocated with the specified size. It is
expressed in storage units and need not be static; refer to package SYSTEM for the meaning of storage units.

Any attempt to allocate more objects than the collection can hold causes a STORAGEERROR exception to be
raised. Dynamically sized records or arrays may carry hidden administrative storage requirements that must be
accounted for as part of the collection size. Moreover, alignment constraints on the type of the allocated objects
may make it impossible to use all memory locations of the allocated collection. Furthermore, some administra-
tive overhead for the allocator must be taken into account by the user (currently 1 word per allocated object).

In the absence of a specification of a collection size, the collection is extended automatically if more objects
are allocated than possible in the collection originally allocated with the compiler-established default size. In this
case, STORAGEERROR is raised only when the available target memory is exhausted. If a collection size of
zero is specified, no access collection is allocated.

5.42.6. Specification of Task Activation Size

The specification of a task activation size causes the task activation to be allocated with the specified size. It
is expressed in storage units; refer to package SYSTEM for the meaning of storage units.

Any attempt to exceed the activation size during execution causes a STORAGEERROR exception to be
raised. Unlike collections, there is generally no extension of task activations.

5.42.7. Speciflcation of' SMALL

Only powers of 2 are allowed for ' SMALL.
The length of the representation may be affected by this specification. If a size specification is also given for

the type, the size specification takes precedence; the specification of ' SMALL must then be accommodatable
within the specified size.

5.4.3. Enumeration Representation Clauses
For enumeration representation clauses [LRM 13.3), the following restrictions apply:

* The internal codes specified for the literals of the enumeration type may be any integer value between
INTEGER' FIRST and INTEGER' LAST. It is strongly advised to not provide a representation clause that
merely duplicates the default mapping of enumeration types, which assigns consecutive numbers in as-
cending order starting with 0, since unnecessary runtime cost is incurred by such duplication. It should be
noted that the use of attributes on enumeration types with user-specified encodings is costly at run time.

" Array types, whose index type is an enumeration type with non-contiguous value encodings, consist of a
contiguous sequence of components. Indexing into the array involves a runtime translation of the index
value into the corresponding position value of the enumeration type.

5-7

USER MANUAL FOR TARTAN ADA VMS C30

5,4.4. Record Representation Clauses
The alignment clause of record representation clauses [LRM 13.4) is observed. The specified expression

must yield a target-dependent value.
Static objects may be aligned at powers of 2 up to a page boundary. The specified alignment becomes the

minimum alignment of the record type, unless the minimum alignment of the record forced by the component
allocation and the minimum alignment requirements of the components is already more stringent than the
specified alignment.

The component clauses of record representation clauses are allowed only for components and discriminants
of statically determinable size. Not all components need to be present. Component clauses for components of
variant parts are allowed only if the size of the record type is statically determinable for every variant.

The size specified for each component must be sufficient to allocate all possible values of the component
subtype (but not necessarily the component type). The location specified must be compatible with any alignment
constraints of the component type; an alignment constaint on a component type may cause an implicit alignment
constraint on the record type itself.

If some, but not all, discriminants and components of a record type are described by a component clause, then
the discriminants and components without component clauses are allocated after those with component clauses;
no attempt is made to utilize gaps left by the user-provided allocation.

5.4.5. Address clauses
Address clauses [LRM 13.5] are supported with the following restrictions:

" When applied to an object, an address clause becomes a linker directive to allocate the object at the given
address. For any object not declared immediately within a top-level library package, the address clause is
meaningless. Address clauses applied to local packages are not supported by Tartan Ada. Address clauses
applied to library packages are prohibited by the syntax; therefore, an address clause can be applied only to
a p:,. -age if it is a body stub.

" Address clauses applied to subprograms and tasks are implemented according to the LRM rules. When
applied to an entry, the specified value identifies an interrupt in a manner customary for the target.
Immediately after a task is created, a runtime call is made for each of its entries having an address clause,
establishing the proper binding between the entry and the interrupt.

" Specified addresses must be static.

5.4.6. Pragma PACY
Pragma PACK [LRM 13.1] is supported. For details, refer to the following sections.

5.4.6.1. Pragma PACK for Arrays

If pragma PACK is applied to an array, the densest possible representation is chosen. For details of packing,
refer to the explanation of size specifications for arrays (Section 5.4.2.3).

If, in addition, a length clause is applied to

1. the array type, the pragma has no effect, since such a length clause already uniquely determines the array
packing method.

2. the component type, the array is packed densely, observing the component's length clause. Note that the
component length clause may have the effect of preventing the compiler from packing as densely as
would be the default if pragma PACK is applied where there was no length clause given for the com-
ponent type.

S-8

APPENDIX F TO NMI-STD-I815A

5.4.6.2. The Predefined Type Siing

Package STANDARD applies Pragma PACK to the type string. However, when applied to character arrays,
this pragma cannot be used to achieve denser packing than is the default for the target: 1 character per 32-bit
word.

5.4.6.3. Prrgma PACK for Records

If pragma PACK is applied to a record, the densest possible representation is chosen that is compatible with
the sizes and alignment constraints of the individual component types. Pragma PACK has an effect only if the
sizes of some component types are specified explicitly by size specifications and are of non-referable nature. In
the absence of pragma PACK, such components generally consume a referable amount of space.

It should be noted that default type mapping for records maps components of boolean or other types that
require only a single bit to a single bit in the record layout, if there are multiple such components in a record.
Otherwise, it allocates a referable amount of storage to the component.

If pragma PACK is applied to a record for which a record representation clause has been given detailing the
allocation of some but not all components, the pragma PACK affects only the components whose allocation has
not been detailed. Moreover, the strategy of not utilizing gaps between explicitly allocated components still
applies.

5.4.7. Minimal Alignment for Types

Certain alignment properties of values of certain types are enforced by the type mapping rules. Any represen-
tation specification that cannot be satisfied within these constraints is not obeyed by the compiler and is ap-
propriately diagnosed.

Alignment constraints are caused by properties of the target architecture, most notably by the capability to
extract non-aligned component values from composite values in a reasonably efficient manner. Typically, restric-
tions exist that make extraction of values that cross certain address boundaries very expensive, especially in
contexts involving array indexing. Permitting data layouts that require such complicated extractions may impact
code quality on a broader scale than merely in the local context of such extractions.

Instead of describing the precise algorithm of establishing the minimal alignment of types, we provide the
general rule that is being enforced by the alignment rules:

No object of scalar type including components or subcomponents of a composite type, may span a target-
dependent address boundary that would mandate an extraction of the object's value to be performed by two
or more extractions.

5.5. IMPLEMENTATION-GENERATED COMPONENTS IN RECORDS
The only implementation-dependent components allocated by Tartan Ada in records contain dope information

for arrays whose bounds depend on discriminants of the record. These components cannot be named by the user.

5.6. INTERPRETATION OF EXPRESSIONS APPEARING IN ADDRESS CLAUSES

Section 13.5.1 of the Ada Language Reference Manual describes a syntax for associating interrupts with task
entries. Tartan Ada implements the address clause

for TOENTRY use at intID;

by associating the interrupt specified by intID with the toentry entry of the task containing this address
clause. The interpretation of nt ID is both machine and compiler dependent.

5-9

USER MANUAL FOR TARTAN ADA VMS C30

5.7. RESTRICTIONS ON UNCHECKED CONVERSIONS
Tartan supports UNCHECKEDCONVERSION with a restriction that requires the sizes of both source and

target types to be known at compile time. The sizes need not be the same. If the value in the source is wider than
that in the target, the source value will be truncated. If narrower, it will be zero-extended. Calls on instantiations
of UNCHECKEDCONVERSION are made inline automatically.

5.8. IMPLEMENTATION-DEPENDENT ASPECTS OF INPUT-OUTPUT PACKAGES
Tartan Ada supplies the predefined input/output packages DIRECT 10, SEQUENTIAL 10, TEXTio, and

LOW LEVEL 10 as required by LRM Chapter 14. However, since T320C30 is used in embedded applications
lacking both standard 1/0 devices and file systems, the functionality of DIRECTIO, SEQUENTIAL_10, and
TEXTIO is limited.

DIRECTI0 and SEQUENTIAL_10 raise USEERROR if a file open or file access is attempted. TEXT_10
is supported to CURRENTOUTPUT and from CURRENT-INPUT. A routine that takes explicit file names raises
USEERROR.

5.9. OTHER IMPLEMENTATION CHARACTERISTICS
The following information is supplied in addition to that required by Appendix F to MIL-STD-1815A.

5.9.1. Definition of a Main Pr,,gram
Any Ada library subprogram unit may be designated the main program for purposes of linking (using the

ALBC3 0 command) provide hat the subprogram has no parameters.
Tasks initiated in imported library units follow the same rules for termination as other tasks (described in

LRM 9.4 (6-10)]. Specifically, these tasks are not terminated simply because the main program has terminated.
Terminate alternatives in selective wait statements in library tasks are therefore strongly recommended.

5.9.2. Implementation of Generic Units
All instantiations of generic units, except the predefined generic UNCHECKED CONVERSION and

UNCHECKED DEALLOCATION subprograms, are implemented by code duplications. No attempt at sharing
code by multiple instantiations is made in this release of Tartan Ada. (Code sharing will be implemented in a
later release.)

Tartan Ada enforces the restriction that the body of a generic unit must be compiled before the unit can be
instantiated. It does not impose the restriction that the specification and body of a generic unit must be provided
as pan of the same compilation. A recompilation of the body of a generic unit will obsolete any units that
instantiated this generic unit.

5.9.3. Attributes of Type Duration
The type DURATION is defined with the following characteristics:

DURATION' DELTA is 0.0001 sec
DURATION' SMALL is 6.103516E-5 sec
DURATION' FIRST is -86400.0 sec
DURATION' LAST is 86400.0 sec

5.9.4. Values of Integer Attributes
Tartan Ada supports the predefined integer type INTEGER. The range bounds of the predefined type

INTEGER are:

INTEGER' FIRST = -2**31
INTEGER' LAST - 20*31-1

5-10

APPENDIX F TO MIL-STD- 1 S15A

The range bounds for subtypes declared in package TEXT_ o are:

COUNT' FIRST = 0
COUNT' LAST = INTEGER' LAST - I

POSITIVECOUNT' FIRST = I
POSITIVECOUNT' LAST = INTEGER' LAST - 1

FIELD' FIRST =0
FIELD' LAST = 20

The range bounds for subtypes declared in packages DIRECT 1o are:

COUNT' FIRST =0
COUNT' LAST = INTEGER' LAST

POSITIVE COUNT' FIRST= I
POSITIVE-COUNT' LAST = COUNT' LAST

5-11

USER MANUAL FOR TARTAN ADA VMS C0

5.9.5. Values of Floating-Point Attributes

5-12

APPE.NDIX F TO .MIL-STD-1315A

Tartan Ada supports the predefined floating-point types FLOAT and LONG_FLOAT.

Attribue Value for FLOAT

DIGITS 6

MANTISSA 23

EMAX 92

EPSILON 16#0.1000_00#E-4
approximately 9.53674E-07

SMALL 16#0.8000_00#E-21
approximately 2.58494E-26

LARGE 16#0.FFFFFS#E+21
approximately 1.93428E+25

SAFEEMAX 126

SAFE SMALL 16#0.2000_"O#E-31
approximately 5.87747E-39

SAFELARGE 16#0.3FFFFE#E+32
approximately 8.50706E+37

FIRST -16#0.1000_00E+33
approximately -3.40282E+38

LAST 16#0.FFFFFF#E+32
approximately 3.40282E.38)

MACHINERADIX 2

MACHINEMANTISSA 24

MACHINEEMAX 128

MACHINEEMIN -126

MACHINEROUNDS FALSE

MACH INEOVERFLOWS TRUE

5-13

USER MANUAL FOR TARTAN ADA VMS C30

Attribute Value for LONG FLOAT

DIGITS 9

MANTISSA 31

EMAX 124

EPSILON 16#0.4000_0000_0#E-7
approximately 9.31322575E-10

SMALL 16#0.8000_0000_0#E-31
approximately 2.35098870E-38

LARGE 16#0.FFFFFFFE_0#E+31
approximately 2.12676479E+37
SAFEEMAX 1022

SAFE SMALL 16#0.2000_0000_0#E-31
approximately 5.87747175E-39

SAFELARGE 16#0.3FFF_FFFF_8#E+32
approximately 8.50705917E+37

FIRST -16#0.1000_0000_0#E+33
approximately -3.40282367E+38

LAST 16#0.FFFFFFFF_0#E+32
approximately 3.40282367E+38

MACHINERADIX 2

MACHINEMANTISSA 32

MACHINEEMAX 128

MACHINEEMIN -126

MACHINEROUNDS FALSE

MACHINEOVERFLOWS TRUE

5-14

APPENDIX F TO ..MIL-STD-1815A

5.10. SUPPORT FOR PACKAGE MACHINECODE
Package MACHINE CODE provides the programmer with an interface through which to request the genera-

tion of any instruction lat is available on the C30. The ADAC30 implementation of package MACHINECODE
is similar to that described in Section 13.8 of the Ada LRM, with several added features.

5.10.1. Basic Information
As required by LRM, Section 13.8, a routine which contains machine code inserts may not have any other

kind of statement, and may not contain an exception handler. The only allowed declarative item is a use clause.
Comments and pragmas are allowed as usual.

5.10.2. Instructions
A machine code insert has the form TYPE MARK' RECORDAGGREGATE, where the type must be one of the

records defined in package MACHINECODE. Package MACHINE CODE defines seven types of records. Each
has an opcode and zero to 6 operands. "These records are adequate for the expression of all instructions provided
by the C30.

5.10.3. Operands
An operand consists of a record aggregate which holds all the information to specify it to the compiler. All

operands have an address mode and one or more other pieces of information. The operands correspond exactly to
the operands of the instruction being generated.

5.103.1. Address Modes
Each operand in a machine code insert must have an Address ModeName. The address modes provided in

package MACHINE_.CODE provide access to all address modes supported by the C30.
In addition, package MACHINECODE supplies the address modes SymbolicAddress and

Symbolic_Value which allow the user to refer to Ada objects by specifying Object' ADDRESS as the value
for the operand. Any Ada object which has the 'ADDRESS attribute may be used in a symbolic coerand.
SymbolicAddress should be used when the operand is a true address (that is, a branch target for example).
SymbolicValue should be used when the operand is actually a value (that is, one of the source operands of
an ADD I instruction).

When an Ada object is used as a source operand in an instruction (that is, one from which a value is read), the
compiler will generate code which fetches the value of the Ada object. When an Ada object is used as the
destination operand of an instruction, the compiler will generate code which uses the address of the Ada object as
the destination of the instruction.

5.10.4. Examples
The ADAC30 implementation of package MACHINECODE makes it possible to specify both simple machine

code inserts such as
two_format' (LDI, (Inmn, 5), (Reg, RO))

and more complex inserts such as
three format' (ADDI3,

(IMM, 10),
(SymbolicValue, Array_Var(X, Y, 27)'ADDRESS),
(Symbolic-Address, Parameter l'ADDRESS))

In the first example, the compiler will emit the instruction LDI 5, RO. In the second example, the compiler
will first emit whatever instructions are needed to form the address of Array_.Var (X, Y, 27) and then emit
the ADD13 instruction. If Parameter _1 is not found in a register, the compiler will put the result of the
addition in a temporary register and then store it to Parameter 1'ADDRESS. Note that the destination
operand of the ADDI3 instruction is given as a Symbolic-Address. This holds true for all destination

5.15

USER MANUAL FOR TARTAN ADA VMS C30

operands. The various error checks specified in the LRM will be performed on all compiler-generated code
unless they are suppressed by the programmer (either through pragma SUPPRESS, or through command
qualifiers).

5.10.5. Incorrect Operands

Two modes of operation are supplied for package MACHINE CODE: Fixup mode and NoFixup mode.
The choice of mode is made with the qualifier /FixupMachine_Code or its negation
/No_FixupMachineCode.

In No Fixup mode, the specification of incorrect operands for an instruction is considered to be a fatal
error. In this mode, the compiler will not generate any extra instructions to help you to make a machine code
insertion. Note that it is still legal to use 'ADDRESS constructs as long as the object which is used meets the
requirements of the instruction.

In Fixup mode, if you specify incorrect operands for an instruction, the compiler will do its best to fix up the
machine code to provide the desired effect. For example, although it is illegal to use a memory address as the
destination of an ADDI instruction, the compiler will accept it and try to generate correct code. In this case, the
compiler will load the value found at the memory address indicated into a register, use this register in the ADD I
instruction, and then store from that register back to the desired memory location.

Two.Opnds'(ADDI, (I=mn, 10), (ARI, ARI))

will produce a code sequence like

LDI *AR1, RO
ADDI 10, RO
STI RO, *AR1

The next example illustrates the fix up required when the displacement is out of range for the first operand of an
ADD 13 instruction. The displacement is first loaded into one of the index registers.

ThreeOpnds' (ADDI3, (IPDA, AR3, 2), (Reg, RO), (Reg, RI))

will produce a code sequence like

LDI 2, IRO
ADDI3 AR3(IRO), RO, R1

5.10.6. Register Usage
Since the compiler may need to allocate registers as temporary storage in machine code routines, there are

some restrictions placed on your register usage. The compiler will automatically free all the registers which
would be volatile across a call for your use (that is, RO..R3, ARO..AR2, IRO, IRI, and DP). If you reference any
other register, the compiler will reserve it for your use until the end of the machine code routine. The compiler
will not save the register automatically if this routine is inline expanded. This means that the first reference to a
register which is not volatile across calls should be an instruction which saves its value in a safe place. The value
of the register should be restored at the end of the machine code routine. This rule will help ensure correct
operation of your machine code insert even if it is inline explaned in another routine. However, the compiler will
save the register automatically in the prolog code for the routine and restore it in the epilog code for the routine if
the routine is not inline expanded.

The compiler may need several registers to generate code for operand fixups in machine code inserts. If you
use all the registers, fixups will not be possible. In general, when more registers are available to the compiler it is
able to generate better code.

5-16

APP \NDIX FTO MIL-STD-1815A

5.10.7. Inline Expansion
Routines which contain machine code inserts may be inline expanded into the bodies of other routines. This

may happen under programmer control through the use of pragma INLINE, or at Optimization Level 3 when the
compiler selects that optimization as an appropriate action for the given situation. The compiler will treat the
machine code insert as though it was a call; volatile registers will be saved and restored around it, etc.

5.10.8. Unsafe Assumptions
There are a variety of assumptions which should not be made when writing machine code inserts. Viola ,n

of these assumptions may result in the generation of code which does not assemble or which may not function
correctly.

" The compiler will not generate call site code for you if you emit a call instruction. You must save and
restore any volatile registers which currently have values in them, etc. If the routine you call has out
parameters, a large function return result, or an unconstrained result, it is your responsibility to emit the
necessary instructions to deal with these constructs as the compiler expects. In other words, when you emit
a call, you must follow the linkage conventions of the routine you are calling. For further details on call
site code, see Sections 6.4, 6.5 and 6.6.

" Do not assume that the ' ADDRESS on SymbolicAddress or Symbolic_Value operands means
that you are getting an ADDRESS to operate on. The Address- or Value-ness of an operand is determined
by your choice of Symbolic_Address or Symbolic-Value. This means that to add the contents of
x to R3, you should write

ThreeFormat' (ADDI, (Symbolic-Value, X'ADDRESS),
(Reg, R3))

but to add the address of x to R3, you should write
ThreeFormat' (ADDI, (Symbolic-Address, X'ADDRESS),

(Reg, R3));

5.10.9. Package MACHINECODE
with system; -- -'- ada --

package MachineCode is

type Instruction Mnemonic is
-- the character "i" has been appended to instructions that
-- conflict with Ada reserved words.
(ABSF, ABSFSTF, ABSI,
ABSI STI, ADDC, ADOC3,
ADDC3 STI, ADOF, ADDF3,
ADDF3_STF, ADDI, ADDI3,
ADD13 STI, ANDi, AND3,
AND3 STI, ANON, ANDN3,
ASH, ASH3,
ASH3 STI, BU, BLS,
BHI, BLO, BHS,
BEQ, BNE, BLE,
BGT, BLT, BGE,
BZ, BNZ, BNP, -- BNP is another name for BLE
BP, BN, BNN,
BNV, BV, BNUF,
BUF, BNC, BC,
BNLV, BLV, BNLUF,
BLUF, BZUF, BUD,
BLSD, BHID, BLOD,
BHSD, BEQD, BNED,
BLED, BGTD, BLTD,
BGED, BZD, BNZD,
BNPD, BPD, BND, -- BNPD is another name for BLED

5-17

USER MA&UAL FOR TARTAN ADA VMS C0

BNNO, BNVD, BVD,
BNUFD, BCJFO, BNCD,
BCD, BNLVD, BLVD,
BNLUFD, BLUFD BZUFD,
BR, BRD, CALL,

CALLnoret, -- Another name for CALL.
-- -- Use this when call never returns.

CALLU, CALLLS,
CALLHI, CALLLO, CALLHS,
CALLEQ, CALLNE, CALLLE,
CALLGT, CALLLT, CALLGE,
CALLZ, CALLNZ, CALLNP, -- CALLNP is another name for CALLLE
CALLP, CALLN, CALLNN,
CALLNV, CALLV, CALLNUF,
CALLUF, CALLNC, CALLC,
CALTLNLV, CALLLV, CALLNLUF,
CALLLUF, CALLZUF,

case jump, -- Another name for BU.
-use this when building a CASE statement

CMPF, CMPF3,
CMPI, CMP13,
DBCJ, DBLS, DBHI,
OBLO, DBHS, DBEQ,
DBNE, DBLE, DBGT,
DBLT, DBGE, DBZ,
DBNZ, DBNP, DBP, -- DSNP is another name for DBLE
DBN, DBNN, DBNV,
DBV, DBNUF, DBUF,
DBNC, OBC, OBNLV,
DBLV, DBNLUF, DBLUF,
DBZUF, DBUD, DBLSD,
DBHID, DBLOD, DBHSD,
DBEQD, OBNED, DBLED,
DBGTD, DBLTD, DBGED,
OBZD, DBNZD, DBNPD, -- DBNPD is another name for OBLED
DBPD, DBND, DBNND,
DBNVD, DBVD, OBNUFO,
DBUFD, DBNCD, DBCD,
DBNLVD, DBLVD, DBNLUFD,
DBLUFO, OBZUFD, FIX,
FIXSTI, FLOATi, FLOATSTF,
lACK, IDLE, LOE,
LOF, LDFU, LDFLS,
LDFHI, LDFLO, LDFHS,
LOFEQ, LDFNE, LDFLE,
LDFGT, LDFLT, LDFGE,
LDFZ, LDFNZ, LDFNP, -- :FNP is another name for 7LDE'LE
L-DFP, LDFN, LDFNN,
LDFNV, LDFV, LDFNUF,
LOFUF, LOFNC, LDFC,
LDFNLV, LOFLV, LOFNLUF,
LOFLUF, LDFZUF, LDFI,
LOFLOF, LDF_STF, LDI,
LDIU, LDILS, LDIHI,
LOILO, LDIRS, LDIEQ,
LOINE, LDILE, LDIGT,
LDILT, LDIGE, LDIZ,
LDINZ, LDINP, LDIP, -- LOINP is another name for !DDLE
LOIN, LDINN, LDINV,
LDIV, LDINUF, LOIUF,
LDINC, LDIC, LDINLV,
LDILV, LDIN4LUF, 1LDILUF,

APPENDIX FTO MIL*STD-18lSA

LOIZUF, LDII, LOILDI,
LDISTI, LOM, LSH,
LSH3S, LSH3 STI, MPYF,
MPYF3. MPYF3_STF,

-MPYF3_ADDF3 srcA, srcB, dsti, srcC, srcO, ~t

MPYF3_ADDF3_1, -- srcA: indirect; srcB: i'ndirect; dstl: RO or R
-srcC: Rn Register; srcD: Rn Register; dst2 R2 or R3

MPYF3_ADDF3_2, -- srcA: Rn Register; srcB: i4ndi;rect.; dst,: RO or R
-srcC: Rn Register; srcD: indirect; dst2: 32 or R3

LMPYF3 _ADDF3 3, -- srcA: Rn Register; srcB: Rn Register; dstl: R'. or R!
-srcC: indirect; srcD: indirect; dst2: R2 or R3

MPYF3_ADDF3_4, -- srcA: Rn Register; srcB: indirect; dsti: RO or RI
-srcC: indirect; srcD: Rn Register; dst2: R2 or R3

MPYF3_ADDF3_5, -- srcA: indirect; srcB: Rn Regi4ster; dst'l: RO or R!
-srcC: Rn Register; srcD: indirect-; dst2: R2 or R3

MPYF3_ADDF3_6, -- srcA: indirect; srcB: Rn Register; dsti: RO or R!
-srcC: indirect: srcD: Rn Register; dst2: R2 or R3

-MPYF3_SUBF3 srcA, srcB, dstJ., srcC, srcD, dst2

MPYF3-SUBF3_1, -- srcA: indirect; srcB: indirect; dsti: RO or RI
-srcC: Rn Register; srcD: Rn Register; dst2 R2 or R3

MPYF3_SUBF3_2, -- srcA: Rn Register; srcB: indirect; dstl: RO or R!
-srcC: Rn Register; srcD: indirect; dst2: R2 or R3

MPYF3_SUBF3_3, -- srcA: Rn Register; srcB: Rn Register; dstl: RO or R
-srcC: indirect; srcD: indirect; ast2: R2 or R3

M1PYF3 _SUBF3_4, -- srcA: Rn Register; srcB: indirect-; dstl: RO or R!
-srcC: indirect; srcD: Rn Register; dst2: R2 or R3

,MPYF3_StJBF3_5, -- srcA: indirect; srcB: Rn Register; dst.: RD or R!
-srcC: Rn Register; srcD: indirect; dst2: R2 or R3

MPYF3_SUBF3_6, -- srcA: indirect; srcB: Rn Register; dstl: RD or R!
-srcC: indirect: srcD: Rn Register; dst2: R2 or R3

MPYI, MPY13,

MPYI3_STI,

-MPY13_ADD13 srcA, srcB, dsti, sr=C, srcO, dst2

MPY13_ADDI3_I, -- srcA: indirect; srcB: indirect; dsti: RD or R!
-srcC: Rn Register; srcD: Rn Register; dst2 R2 or R3

MPYI3_ADD13_2, -- srcA: Rn Register; srcB: indirect; dst'.: RD or R!
-srcC: Rn Register; srcD: indirect; -4st2: R2 or R3

MPY!3 _ADD13 3, -- srcA: Rn Register; srcB: Rn Register; dstl: RD or R.
-srcC: indirect; srcD: indirect; dst2: R2 or R3

MPY13 ADDI3_4, -- srcA: Rn Register; srcB: indirect; dsti: RD or R!
-srcC: indirect; srcC: Rn Register; dst2: R2 or R3

MPYIJ _ADD1J_5, -- srcA: indirect; srcB: Rn Register; dstl: RD or R!

-srcC: Rn Register; srcD: indirect; dst2: R2 or R3

5.19

USER.MAMUAL FOR TARTAIN ADA VMS C0

MPYI3_ADOI3_6, -- srcA: indirect; srcB: Rn Register; dst.: RO or RI
-srcC: indirect: srcD: Rn Register; dst2: R2 or R3

-MPYIJSUBI3 srcA, srcS, dstl, srcC, srcO, dst2

MPY13_SUBI3_1, -- srcA: indirect; srcB: indirect; dstl: RO or Rl
-srcC: Rn Register; srcD: Rn Register; dst2 R2 or R3

MPYTJ _SUBI3_2, -- srcA: Rn Register; srcB: indirect; dst': RC or R!
-srcC: Rn Register; srcD: indirect; dst2: R2 or R3

,MPY13_SUB13_3, -- srcA: Rn Register; srcB: Rn Register; dsti: RO or R!
-srcC: indirect; srcD: indirect.; dst2: R2 or R3

MPY13_SUB13_4, -- srcA: Rn Register; srcB: indirect; dst:: RO or R!
-srcC: indirect; srcD: Rn Register; dst2: R2 or R3

MPY13_SUB13_5, -- srcA: indirect; srcB: Rn Register; dsti: RO or R!
-srcC: iRn Register; srcD: indirect; dst2: R2 or R3

MPY13_SUBI3_6, -~srcA: indirect; srcB: Rn Register; dstl: RO or R!
-srcC: indirect: srcD: Rn Register; dst2: R2 or R3

NEGB, NEGF,
NEGF_-STF, NEGI, NEGI_STI,
NOP, NORM, NORM STF,
NOTi, NOTSTI, ORi,
0R3, 0R3 S§TI, POP,
POPF, PUS H, PUSHF,
RETIU, RETILS, RETIHI,
RETILO, RETIRS, RETIEQ,
RETINE, RETILE, RETIGT,
RETILT, RETIGE, RETIZ,
RETINZ, RETINP, RETIP, -- RE.:NP is another name "or RETLIE
RETIN, RETINN, RETINV,
RETIV, RETINUF, RETIUF,
RETINC, RET--c, RETINLV,
RETILV, RETINLUF, RETILUF,
RETIZUF, RETSU, RETSLS,
RETSHI, RETSLO, RETSHS,
RETSEO, RETSNE, RETSLE,
RETSGT, RETSLT, RETSGE,
RETSZ, RETSNZ, RETSNP, -- RETSNP is another name for RETSLE
RETSP, RETSN, RETSNN,
RETSNV, RETSV, RETSNUF,
RETSUF, RETSNC, RETSC,
RETSNLV, RETSLV, RETSNLUF,
RETSLUF, RETSZUF, RND,
ROL,
ROLC, ROR,
RORC,
RPTB, RPTS, SIGI,
STF, STFI, STF STF,
STI, STII, STI-STI,
SUBB, SUBB3,
SUBC, SUBF, SUBF3,
SUBF3_STF, SUBI, SUB13,
SUB13_STI, SOBRB,
SUBRF,
SUBRI,
SWI, TRAPU,
TRAPLS, TRAPHI, TRAPLO,
TRAPHS, TRAPEQ, TRAPNE,
TRAPLE, TRAPGT, TRAPLT,
TRAPGE, TRAPZ, TRAPNZ,
TRAPNP, TRAPP, TRAPN, -- RAN? is another name for :RAFLE

5-20

APPENDIX FTO MIL-STD-1815A

TRAPNN, TRAPNV, TRAPV,
TRAPNUF, TRAPUF, TRAPNC,
TRAPC, TRAPNLV, TRAPLV,
TRAPNLUF, TRAPLUF, TRAPZUF,
TSTB, TSTB3,
XORi, XOR3, XOR3_STI);

type Register is
RO, RI, R2, R3, R4, R5, R6, R7,

Ar0, ARI, AR2, AR3, AR4, AR5, AR6, AR7,
OP,
IR0, IR1,
BK, SP, ST, IE,
IFlags, -- expanded name to avoid conflict with ADA reserved wor""
IOF,
RS, RE, RC);

type FloatLit is digits 9;

subtype AuxiliaryRegister is Register range ARC AR7;
subtype IndexRegister is Register range JR0 .R!;
subtype DataPagePointer is Register range DP OP;

subtype Data_PageOffset is integer range 0 .6777215;
subtype Displacement is integer range 0 255;

type AddressMode is
(Imm, -- short Immediate
Longlmm, -- longe Immediate
FloatImm,-- short float immediate
Direct, -- Direct
Reg, -- Register
ARI, -- Auxiliary Register indirect
IPDA, -- Indirect with Pre -Displacement Add
IPDS, -- Indirect with Pre -Displacement Subtract
IPrDAM, -- Indirect with Pre -Displacement Add & Modify
IPrDSM, -- Indirect with Pre -Displacement Subtract & Modify
IPoDAM, -- Indirect with Post-Displacement Add & Modify
IPoDSM, -- Indirect with Post-Displacement Subtract & Modify
IPoDACM, -- Indirect with Post-Displacement Add & Circular Modify
IPoDSCM, -- Indirect with Post-Displacement Subtract & Circular Modify
IPrIA, -- Indirect with Pre -Index Add
IPrIS, -- Indirect with Pre -Index Subtract
IPrIAM, -- Indirect with Pre -Index Add & Modify
IPrISM, -- Indirect with Pre -Index Subtract & Modify
IPoIAM, -- Indirect with Post-Index Add & Modify
IPoISM, -- Indirect with Post-Index Subtract & Modify
IPoIACM, -- Indirect with Post-Index Add & Circular Modify
IPoISCM, -- Indirect with Post-Index Subtract & Circular Modify
IPoIABRM,-- Indirect with Post-index Add & Bit-Reverse Modify
PcRel, -- Pc-relative (a label, for example)

Symbolic-Address, -- special use to express the address of an ADA object
Symbolic-Value); -- special use to express the value of an ADA object

type Operand(AM : AddressMode := :mm -- defaulted to keep Ada Happy
) is

record
-- This record describes all the possible representations of an operand.
-- It must be coordinatea with the code generator's model.
case AM is
when !mm ->

-- Short Immediate
K: Integer:

when Longlmm =>

S-21

USER NANUAL FOR TARTAN ADA VMS C30

-- longe Immediate
Address : System.Address;

when Floatlmm =>
-- Short Float Immediate
F: FloatLit;

when Direct =>
-- Direct
Page-Address : Data_PageOffset;

when Reg =>
-- Register
R_Reg : Register;

when ARI =>
-- Auxiliary Register Indirect
ARIAr : AuxiliaryRegister;

when IPDA =>
-- Indirect with Pre-Displacement Add
IPDA Ar : Auxiliary_Register;
IPDA disp Displacement;

when IPDS =>
-- Indirect with Pre-Oisplacement Subtract
IPDS Ar AuxiliaryRegister;
IPDS-disp Displacement;

when IPrDAM =>
-- Indirect with Pre-Displacement Add & Mcdify
IPrDAM Ar AuxiliaryRegister;
IPrDAMdisp Displacement;

when IPrDSM =>

-- Indirect with Pre-Disolacement Subtract & Modify
IPrDSMAr Auxiliary_Register;
IPrDSMdisp Displacement;

when IPoDAM =>

-- Indirect with Post-Displacement Add & Modify
IPoDAM -Ar AuxiliaryRegister;
IPoDAM-disp Displacement;

when IPoDSM =>
-- Indirect with Post-Displacement Subtract & Modify
IPoDSM Ar AuxiliaryRegister;
IPoDSMdisp Displacement;

when IPoDACM =>
-- Indirect with Post-Displacement Add & Circular Modify
IPoDACMAr : AuxiliaryRegister;
IPoDACM-disp Displacement;

when IPoDSCM ->
-- Indirect with Post-Displacement Subtract & Circular Modify
IPoDSCM Ar : AuxiliaryRegister;
IPoDSCMdisp Displacement;

when IPrIA ->
-- Indirect with Pre-index Add
IPrIA Ar AuxiliaryRegister;
IPrIA Ir Index_Register;

when IPrIS =>

5-22

APPENDLX FTO MIL-STD-ISI5A

-- Indirect with Pre-Index Subtract
IPrIS Ar : Auxiliary Register;
IPrISIr IndexRegister;

when IPrIAM ->
-- Indirect with Pre-Index Add & Modify
IPrIAMAr : Auxiliary_Register;
IPrIAM_Ir : Index-Register;

when IPrISM =>
-- Indirect with Pre-index Subtract & Modify
IPrISMAr Auxi!iary_Register;
IPrISMIr : IndexRegister;

when IPoIAM ->

-- Indirect with Post-Index Add & Modify
IPoIAMAr AuxiliaryRegister;
IPoIAMIr Index-Register;

when IPoISM ->
-- Indirect with Post-Index Subtract & Modify
IPoISMAr AuxiliaryRegister;
IPoISMIr IndexRegister;

when IPoIACM =>
-- Indirect with Poat-Index Add & Circular Modify
IPoIACM Ar : AuxiliaryRegister;
IPoIACM=Ir Index-Register;

when IPoISCM =>
-- Indirect with Post-Index Subtract & Circular Modify
IPoISCM Ar Auxiliary Register;
IPoISCMIr : IndexRegister;

when IPoIABRM =>
-- Indirect with Post-Index Add & Bit-Reverse Modify
IPoIABRM Ar : Auxiliary Register;
IPoIABRM-Ir Index Register;

when PcRel =>
-- Pc-relative (a label, for example)
LAddr: System.Address; -- 'ADDRESS of an Ada label

when SymbolicAddress ->
-- special use to express the address of an ADA object
SAddr: System.Address;

when Symbolic Value =>
-- special use to express the value of an ADA ob'ect
SValue: System.Address;

end case;
end record;

type Zero Opnds is
Record

Operation: instructionMnemonic;
end Record;

type One Opnds is
Record

Operation: InstructionMnemonic;
Operand_l: Operand;

end Record;

5-23

USERIMANUAL FOR TARTAN ADA VMS C30

type TwoOpnds is
Record

Operation: Instruction Mnemonic;
Operand_1: Operand;
Operand 2: Operand;

end Record;

type ThreeOpnds is
Record

Operation: Instruction-Mnemonic;
Operand_l: Operand;
Operand_2: Operand;
Operand 3: Operand;

end Record;

type Four Opnds is
Record

Operation: InstructionMnemonic;
Operand_1: Operand;
Operand_2: Operand;
Operand_3: Operand;
Operand_4: Operand;

end Record;

type Five_Oonds is
Record

Operation: Instruction-Mnemonic;
Operand I: Operand;
Operand_2: Operand;
Operand_3: Operand;
Operand_4: Operand;
Operand_5: Operand;

end Record;

type Six_Opnds is
Record

Operation: Instruction-Mnemonic;
Operand_1: Operand;
Operand 2: Operand;
Operand_3: Operand;
Operand_4: Operand;
Operand_5: Operand;
Operand_6: Operand;

end Record;

end Machine Code;

5.10.10. Example
with machinecode; use machinecode;

procedure machexample is

type ary type is new string(l..5);

stl,st2: arytype;

procedure movestring(length: in integer; sl: in arytype;
s2: out ary type) is

-- move string sl, which is length characters, to string s2
-- if this routine was inline expanded, instructions should be present
-- to save and restore any non-volatile registers.
begin

Two_Oonds' (LDl, (SymbolicValue, Length'Address) , (Reg, R3)

5-24

APPENDIX F TO MIL-STD-ISISA

TwoOpnds' (Ll~r, (Symnbolic-Address, sl.'Address), (Peg, ArO));
Two Opnds' (LDI, (SymbolicAddress, s2'Address), (Reg, Anl));
Two_-Opnds'(LDI, (IPoDM, ArO, 1). (Reg, R4));
One TOpnds' (RPTS, (Reg, R3))1;
FourOpnds' (LDI_STI, (IPoDAM, AnD, 1), (Reg, R4),

(Reg, R4), (I~oDAM, Arl, 1));
Two Opods' (STI, (Req, R4), (IPoDAM, Al, 1));

end move-string;

begin

sil:="el;
move-string(5, stJJ, st2);

end mach-exampie;

5-Z5

USER MA-NUAL FOR TARTAN ADA VMS C30

Assembly code output:
.giobai mach example

;mach_example.tmp from src/mach exarnple.ada
;Ada Sun/C30 Version V11.466293001 Copyright 1989, Tartan Laboratorles
1986

.global xxmIOO2

.ref ARTSTACKPROLOG

.text

xxmIOO2: PUSH AR3
LOI SP,AR3
PUSH AR3
LDI 20,ARO
CALL ARTSTACKPROLOG
ADDI 14,SP
PUSH RS
PUSH RE
PUSH RC
LDI @DEF1,ARO
STI ARO, +AR3 (1)
LDI 1,R1
STI Rl,*+ARJ (2)
STI Rl,*+AR3(3)
L01 5,RO
STI RO,*.4AR3(4)
STI RO,*+AR3(5) line 5
LDI 3,RC ;line 26
LDI @DEF2,ARO
LDI AR3,ARI
ADDI 6,ARI
LDI -ARO;,(1),R2
RPTB L8

L8: LDI *ARO++(l),R2
11 STI R2,*ARI±+(l)

LDI 5,RO line 27
LDI AR3,ARO
ADDI 2,ARO
LDI AR3,ARI
ADDI 2,ARl
LDI 4,Rl

L9: LDI *ARO+#(l),R2
CMPI *ARI#+(l),R2
BEQ LIO
LDI Q,Rl
BR L12

LIO: SUBI 1,Rl
BGT L9
LDt 1,R1

1.2: CMPI 1,R1
BNE L13
LDI AR3,R1
ADDI 6,R1
LDI AR3,ARO
ADDI 2,ARO
LDt AR3,AR1
ADDI 2,ARI
LDt 4,R2

L.4: L01 *ARO++(l),R3
CMPI *AR++(l),R3
BEQ L15
LOt 0,R2
BR L17

L15: SUBI 1,R2

5-26

APPENDIX FTO MIL-STD-1815A

BGT L14
LDI 1, R2

L17: CMP1 1, R2
BNE L13
LDI AR3, R2
ADDI 11,R2
CALL move-stringsC0

L7:
LO1 *+AR3(J.6),RS
LXI *+AR(17),R7
LDI *+AR(18),.4C
LDI AR3,SP
POP AR3
RETSU

L13: TRAPU 15

Total words of code in the above routine 68

data
DEF1: .word L7

text

move-stringOO: PUSH AR3
LDI SP,AR3
PUSH AR3
PUSH R4
PUSH R6
LXI O0EF3,ARO
STI ARO,*#AR3(1)
LT ROR3; ne 13
LDI RI,ARO ; 1-4ne .4
LODT R2,ARI ; J-ne
LO: *ARO-C'2,R4 I -- e 16
RPTS R3 ; i-ne ".7
LDI *ARO+-(:),R4
ii STI R4,*ARI+-'I) U.'. 9

S11T R4,*ARI++(1) lle 20
POP R2 ;.i-ne 13
POP RI
POP RO

L1 9:
LXI *+AR3(2),R4
rD 0 *AR(3),R6
LDI AR3,SP
POP AR3
RE TS U

Total words of code jn the above routine =22

.data
DEF3: .word -19

text
.data

DEF2: .word DEN4
DEN4: .byte 104,401 ;he

.byte 108,108 ;1

.byte III ; 0

Total words of code = 90
Total words of data = 8

.end

5-27

TEST PARAMETERS

APPENDIX C

TEST PARAMETERS

Certain tests in the ACVC make use of implementation-dependent values, such
as the maximum length of an input line and invalid file names. A test that
makes use of such values is identified by the extension .TST in its file
name. Actual values to be substituted are represented by names that begin
with a dollar sign. A value must be substituted for each of these names
before the test is run. The values used for this validation are given
below. The use of the '*' operator signifies a ',ultiplication of the
following character, and the use of the '&' character signifies
concatenation of the preceeding and following strings. The values within
single or double quotation marks are to highlight character or string
values:

Name and Meaning Value

$ACCSIZE 32
An integer literal whose value
is the number of bits sufficient
to hold any value of an access
type.

$BIGID1 239 * 'A' & '1'
An identifier the size of the
maximum input line length which
is identical to $BIGID2 except
for the last character.

$BIG_!D2 239 * 'A' & '2'
An identifier the size of the
maximum input line length which
is identical to SBIGIDl except
for the last character.

$BIGID3 120 * 'A' & '3' & 119 * 'A'
An identifier the size of the
maximum input line length which
is identical to $BIGID4 except
for a character near the middle.

TEST PARAMETERS

Name and Meaning Value

$BIGID4 120 * 'A' & '4' & 119 * 'A'
An identifier the size of the
maximum input line length which
is identical to $BIGID3 except
for a character near the middle.

$BIG_INT_LIT 237 * '0' & "298"
An integer literal of value 298
with enough leading zeroes so
that it is the size of the
maximum line length.

SBIGREALLIT 235 * '0' & "690.0"
A universal real literal of
value 690.0 with enough leading
zeroes to be the size of the
maximum line length.

$BIGSTRINGI life & 120 * 'A' &
A string literal which when
catenated with BIG STRING2
yields the image of BIG IDI.

$BIGSTRING2 & 119 * 'A' & '1' & fel
A string literal which when
catenated to the end of
BIG STRING1 yields the image of
BIGIDI.

$BLANKS 220 *
A sequence of blanks twenty
characters less than the size
of the maximum line length.

$COUNT LAST 2147483646
A universal integer literal
whose value is TEXTIO.COUNT'LAST.

$DEFAULT MEM SIZE 16777216
An integer literal whose value
is SYSTEM.MEMORYSIZE.

$DEFAULTSTOR UNIT 32
An integer literal whose value
is SYSTEM.STORAGEUNIT.

TEST PARAMETERS

Name and Meaning Value

SDEFAULT_SYSNAME T1320C30
The value of the constant
SYSTEM.SYSTEMNAME.

$DELTADOC 2#1.0#E-31

A real literal whose value is
SYSTEM.FINEDELTA.

$FIELD LAST 20
A universal integer
literal whose value is
TEXTIO.FIELD'LAST.

$FIXED NAME NOSUCHFIXED_TYPE
The name of a predefined
fixed-point type other than
DURATION.

$FLOAT NAME NO SUCHFLOATTYPE
The name of a predefined
floating-point type other than
FLOAT, SHORT-FLOAT, or
LONG-FLOAT.

SGREATER THAN DURATION 100_000.0
A universal real literal that
lies between DURATION'BASE'LAST
and DURATION'LAST or any value
in the range of DURATION.

$GREATERTHANDURATIONBASEJLAST 131_073.0
A universal real literal that is
greater than DURATION'BASE'LAST.

$HIGHPRIORITY 100
An integer literal whose value
is the upper bound of the range
for the subtype SYSTEM.PRIORITY.

$ILLEGALEXTERNAL_FILENAMEI /NONEXISTENTDIRECTORYI/FILE1
An external file name which
contains invalid characters.

$ILLEGAL..EXTERNALFILENAME2 /NONEXISTENTDIRECTORY2/FILE2
An external file name which
is too long.

TEST PARAMETERS

Name and Meaning Value

$INTEGER FIRST -2147483648
A universal integer literal
whose value is INTEGER'FIRST.

$INTEGERLAST 2147483647
A universal integer literal
whose value is INTEGER'LAST.

$INTEGER -LASTPLUS_1 2147483648

A universal integer literal
whose value is INTEGER°LAST + 1.

$LESS_THANDURATION -100_000.0

A universal real literal that
lies between DURATION'BASE'FIRST
and DURATION'FIRST or any value
in the range of DURATION.

$LESSTHANDURATIONBASEFIRST -131_073.0

A universal real literal that is
less than DURATION'BASE'FIRST.

$LOW PRIORITY 10

An integer literal whose value
is the lower bound of the range
for the subtype SYSTEM.PRIORITY.

SMANTrSSA_DOC 31

An integer literal whose value
is SYSTEM.MAXMANTISSA.

$MAXDIGITS 9
Maximum digits supported for
floating-point types.

$MAXIN_LEN 240

Maximum input line length
permitted by the implementation.

$MAXINT 2147483647

A universal integer literal
whose value is SYSTEM.MAXjNT.

$MAXINTPLUS 1 2147483648
A universal integer literal
whose value is SYSTEM.MAXINT+1.

TEST PARAMETERS

Name and Meaning Value

$?AXL-_INTBASED_-LITERAL "2:" & 235 * 0' & "11:"

A universal integer based
literal whose value is 2#11#
with enough leading zeroes in
the mantissa to be MAXINLEN
long.

SMAXLENREALBASEDLITERAL "16:" & 233 * '0' & "F.E:"

A universal real based literal
whose value is 16:F.E: with
enough leading zeroes in the
mantissa to be MAX_INLEN long.

$MAX STRING LITERAL '... & 238 * 'A' &

A string literal of size
MAX IN LEN, including the quote
characters.

SMININT -2147483648
A universal integer literal

whose value is SYSTEM.MININT.

$MINTASK SIZE 32
An integer literal whose value
is the number of bits required
to hold a task object which has
no entries, no declarations, and
"NULL;" as the only statement in
its body.

$NAME NOSUCHTYPEAVAILABLE
A name of a predefined numeric
type other than FLOAT, INTEGER,
SHORTFLOAT, SHORT-INTEGER,
LONGFLOAT, or LONGINTEGER.

SNAMELIST T1320C30
A list of enumeration literals
in the type SYSTEM.NAME,
separated by commas.

$NEGBASEDINT 16#FFFFFFFE#

A based integer literal whose
highest order nonzero bit
falls in the sign bit
position of the representation
for SYSTEM.MAXINT.

TEST PARAMETERS

Name and Meaning Value

$NEWHEMSIZE 16777216
An integer literal whose value
is a permitted argument for
pragma MEMORY SIZE, other than
$DEFAULT MEM SIZE. If there is
no other value, then use
$DEFAULTMEMSIZE.

$NEW_STOR UNIT 32
An integer literal whose value
is a permitted argument for
pragma STORAGE UNIT, other than
$DEFAULT STOR UNIT. If there is
no other permitted value, then
use value of SYSTEM.STORAGEUNIT.

$NEVSYS NAME T1320C30
A value of the type SYSTEM.NAME,
other than $DEFAULTSYSNAME. If
there is only one value of that
type, then use that value.

$TASK_SIZE 96
An integer literal whose value
is the number of bits required
to hold a task object which has
a single entry with one 'IN OUT'
parameter.

$TICK 0.0001
A real literal whose value is
SYSTEM.TICK.

WITHDRAWN TESTS

APPENDIX D

WITHDRAWN TESTS
Some tests are withdrawn from the ACVC because they do not conform to the
Ada Standard. The following 44 tests had been withdrawn at the time of
validation testing for the reasons indicated. A reference of the form
AI-ddddd is to an Ada Commentary.

a. E28005C This test expects that the string "-- TOP OF PAGE. --

63" of line 204 will appear at the top of the listing page due
to a pragma PAGE in line 203; but line 203 contains text that
follows the pragma, and it is this that must appear at the top
of the page.

b. A39005G This test unreasonably expects a component clause to
pack an array component into a minimum size (line 30).

c. B97102E This test contains an unitended illegality: a select
statement contains a null statement at the place of a selective
wait alternative (line 31).

d. C97116A This test contains race conditions, and it assumes that
guards are evaluated indivisibly. A conforming implementation
may use interleaved execution in such a way that the evaluation
of the guards at lines 50 & 54 and the execution of task CHANGING-
OF THEGUARD results in a call to REPORT.FAILED at one of

lines 52 or 56.

e. BC3009B This test wrongly expects that circular instantiations
will be detected in several compilation units even though none of
the units is illegal with respect to the units it depends on; by
AI-00256, the illegality need not be detected until execution is
attempted (line 95).

f. CD2A62D This test wrongly requires that an array object's size
be no greater than 10 although its subtype's size was specified
to be 40 (line 137).

g. CD2A63A..D, CD2A66A..D, CD2A73A..D, CD2A76A..D (16 tests] These
tests wrongly attempt to check the size of objects of a derived
type (for which a 'SIZE length clause is given) by passing them
to a derived subprogram (which implicitly converts them to the
parent type (Ada standard 3.4:14)). Additionally, they use the
'SIZE length clause and attribute, whose interpretation is
considered problematic by the WG9 ARG.

WITHDRAWN TESTS

h. CD2A81G, CD2A83G, CD2A84N & M, & CD50110 [5 tests] These tests
assume that dependent tasks will terminate while the main pro-
gram executes a loop that simply tests fir task termination; this
is not the case, and the main program may loop indefinitely
(lines 74, 85, 86 & 96, 86 & 96, and 58, resp.).

i. CD2B15C & CD7205C These tests expect that a 'STORAGE-SIZE
length clause provides precise control over the number of
designated objects in a collection; the Ada standard 13.2:15
allows that such control must not be expected.

j. CD2D1IB This test gives a SMALL representation clause for a
derived fixed-point type (at line 30) that defines a set of
model numbers that are not necessarily represented in the
parent type; by Commentary AI-00099, all model numbers of a
derived fixed-point type must be representable values of the
parent type.

k. CD5007B This test wrongly expects an implicitly declared sub-
program to be at the the address that is specified for an un-
related subprogram (line 303).

1. ED7004B, ED7005C & D, ED7006C & D (5 tests] These tests check
various aspects of the use of the three SYSTEM pragmas; the AVO
withdraws these tests as being inappropriate for validation.

m. CD7105A This test requires that successive calls to CALENDAR.-
CLOCK change by at least SYSTEM.TICK; however, by Commentary
AI-00201, it is only the expected frequency of change that must
be at least SYSTEM.TICK--particular instances of change may be
less (line 29).

n. CD7203B, & CD7204B These tests use the 'SIZE length clause and
attribute, whose interpretation is considered problematic by
the WG9 ARG.

o. CD7205D This test checks an invalid test objective: it treats
the specification of storage to be reserved for a task's
activation as though it were like the specification of storage
for a collection.

p. CE21071 This test requires that objects of two similar scalar
types be distinguished when read from a file--DATA_- ERROR is
expected to be raised by an attempt to read one object as of
the other type. However, it is not clear exactly how the Ada
standard 14.2.4:4 is to be interpreted; thus, this test objective
is not considered valid. (line 90)

q. CE3111C This test requires certain behavior, when two files are
associated with the same external file, that is not required by

WITHDRAWN TESTS

the Ada standard.

r. CE3301A This test contains several calls to ENDOF LINE &
END OF PAGE that have no parameter: these calls were intended
to specify a file, not to refer to STANDARD-INPUT (lines 103,
107, 118, 132, & 136).

s. CE3411B This test requires that a text file's column number be
set to COUNT'LAST in order to check that LAYOUTERROR is raised
by a subsequent PUT operation. But the former operation will
generally raise an exception due to a lack of available disk
space, and the test would thus encumber validation testing.

COTPILEF AliD LTNKEF OPTIONS

APPENDIX E

COMPILER AND LINKER OPTIONS

Chapter 3

Compiling Ada Programs

The ADAC3 0 command is used to compile and assemble Ada compilation units.

3.1. THE ADAC 30 COMMAND FORMAT

The ADAC3 0 command has this format
ADAC30 [Iqualifier[(opdon,]] file-spec [/qualifierC (opdon, .. .]

The parameterfle-spec is a source file name. Since the source files need not reside in the directory in which
the compilation takes place, file-spec must include sufficient directory information to locate the file. If no
extension is supplied with the file name, a default extension of . ADA will be supplied by the compiler.

ADAC30 will accept only one source file per compilation. The source file may contain more than one
compilation unit, but it is considered good practice to place only one compilation unit in a file. The compiler
sequentially processes all compilation units in the file. Upon successful compilation of a unit,

" the Ada program library ADA. DB is updated to reflect the new compilation time and any new dependencies
" one or more separate compilation files and/or object files are generated

If no errors are detected in a compilation unit, The compiler produces an object module and updates the library.
If any error is detected, no object code file is produced, a source Listing is produced, and no library entry is made
for that compilation unit. If warnings are generated, both an object code file and a source listing are produced,
and the library is updated.

3.2. COMMAND QUALIFIERS
Command qualifiers indicate special actions to be performed by the compiler or special output file properties.
The following qualifiers are available:

/CROSS REFERENCE
/NOCROSSREFERENCE (default]

Controls whether the compiler generates a cross-reference table of linknames for
the compilation unit. The table will be placed in the file unit-name. XRF (See
Section 3.5).

/ERROR.LIMIT=n Stop compilation and produce a listing after n errors are encountered, where n is
in the range 0_254. The / ERRORLIMIT qualifier cannot be negated.

/FIXJPMACHINE CODE (default]
/NOFIXUP .YACHI5NE_CODE

When package MACHINE CODE is used. controls whether the compiler attempts
to alter operand address modes when those address modes are used incorrectly.
When /FIXUP MACHINECODE is specified on the command line, the compiler
will possibly generate extra instructions to fix incorrect addressing modes in the
machine code insertion. The compiler will be able to "fixup" most incorrectly

BETA RELEASE 1.0 3-1

USER MANIAL FOR TARTAN ADA VMS C00

specified operands; however, certain illegal inscruction/operand combinations may
cause the compiler to crash. When /NOFIXUP MACHINE CODE is used, the
specification of incorrect operands for an instruction is considered to be an error.
In this case, no code is generated and a listing is produced.

/ LI ST[=opdon]
/NOLIST Controls whether a listing file is produced. If produced, the file has the source file

name and a. LI S extension. The available options are:

ALWAYS Always produce a listing file
NEVER Never produce a listing file, equivalent to /NOLZST
ERROR Produce a listing file only if a compilation error or warning occurs

When no form of this qualifier is supplied in the command line, the default
condition is /LIST-ERROR. When the LIST qualifier is supplied without an
option, the default option is ALWAYS.

/MAC.INECODE
/NOMACHINE CODE (default'

Controls whether the assembly code files produced by the compiler are retained in
the user's directory after compilation is complete. This qualifier is useful if the
user wishes to inspect the compiler output for code correcmess and quality. The
default is /NoMACHINE which deletes these machine language files.

/NOENUMIMAGE Controls whether compiler omits dam segments with the text of enumeration i7
literals. This text is normally produced for exported enumeration types in order to
support the ' -6,AGE attribute. You should use /NOENUMIMAGE only when you
can guarantee that no unit that will import the enumeration type will use ' IMAGE.
However, if you are compiling a unit with an enumeration type that is not visible
to other compilation units, this qualifier is not needed. The compiler can recog-
nize when ' IMAGE is not used and will not generate the supporting srrings.The
/NOENUMIMAGE qualifier cannot be negated.

/OPT=n Controls the level of optimization performed by the compiler, requested by n. The
/OPT qualifier cannot be negated. The optimization levels available are:

n = 0 Minimum - Performs context determination, constant folding, al-
gebraic manipulation, and short circuit analysis.

n = 1 Low -Performs level 0 optimizations plus common subexpression
elimination and equivalence propagation within basic blocks. It also
optimizes evaluation order.

n = 2 Space -This is the default level if none is specified. Performs level 1
optmizations plus flow analysis which is used for common sub-
expression elimination and equivalence propagation across basic
blocks. It also performs invariant expression hoisting, dead code
elimination, and assignment killing. Level 2 also performs lifetime
analysis to improve register allocation. It also performs inine expan-
sion of subprogram calls indicated by Pragma .NLZNE which ap-
pears in the same compilation unit.

3-2 BETA RELEASE 1.0

CO,MPIL4G ADA PROGRAMS

n 3 Time - Performs level 2 optimizations plus inline expansion of sub-
program calls which the optimizer decides are profitable to expand
(from an execution Lime perspective). Other optimizations which
improve execution time at a cost to image size are performed only at
this level.

/PHASES
/NOPHASES [default] Controls whether the compiler announces each phase of processing as it occurs.

/SUP PRES S(=(option, ...)]
Suppresses the specific checks identified by the options supplied. The parentheses
may be omitted if only one option is supplied. The /SUPPRESS qualifier has the
same effect as a global pragma SUPPRESS applied to the source file. If the
source program also contains a pragma SUPPRESS, then a given check is sup-
pressed if either the pragma or the qualifier specifies it; that is. the effect of a
pragma SUPPRESS cannot be negated with the command line qualifier. The
/ SUPPRESS qualifier cannot be negated.

The available options are:

ALL Suppress all checks. This is the default if the
qualifier is supplied with no option.

ACCESS-CHECK As specified in the Ada LRM. Section 11.7.

CONSTRAINT CHECK Equivalent of (ACCESSCHECK, INDEX_CHECX,
DISC'RIMINANT_CHECK, LENGTH T HECK.

RANGE_CHECK).

DISC'RMINANTCHECK As specified in the Ada LRM. Section 11.7.

DIVISIONCHECK Will suppress compile-time checks for division by
zero, but the hardware does not permit efficient run-
time checks, so none are done.

ELABORATIONCHECK As specified in the Ada LRM, Section 11.7.

INDEXCHECK As specified in the Ada LRM, Section 11.7.

LENGTHCHECK As specified in the Ada LRIM, Section 11.7.

OVERFLOW CHECK Will suppress compile-time checks for overflow, but
the hardware does not permit efficient runtime
checks, so none are done.

RANGE CHECK As specified in the Ada LRM, Section 11.7.

STORAGE-CHECK As specified in the Ada LRM, Section 11.7. Sup-
presses only stack checks in generated code, not the
checks made by the alocator as a result of a new
operation.

/WARNINGS (default)
/NOWARNINGS Controls whether the warning messages generated by the compiler are displayed

to the user at the terminal and in a listing ile. if produced.

BETA RELEASE 1.0 3-3

USER MANUAL FOR TARTAN ADA VMS C30

3.3. WHAT UPDATES ARE MADE TO THE PROGRAM LIBRARY
Simply stated, upon successful compilation of a unit.

* the Ada program library A DA. DB is updated to reflect the new compilation time and any new dependencies
" one or more separate compilation files and/or object files are generated.

However, more complicated situations can arise. The following items list the types of compilation units and
address the range of situations that can arise.

" In all cases the transitive closure of the dependencies of a compilation unit in the library must be consis-
tent; that is, the unit must be compiled consistently as defined in section 10.3 of the LRM. A secondary
unit can have the specification of its ancestor in its context clause, although it is redundant. For a more
complete discussion of closure, see Section 4.5.

" A package specification replaces any library unit in the library with the same name, or is simply added if
no such library unit exists.

" A package body replaces any existing body of a package specification with the same name. If no such
specification exists, an error message is issued. If such a specification exists, but the body does not match
the specification in the sense of Section 7.1 of the LRM, error messages are issued.

" A subprogram specification replaces any library unit in the library with the same name, or is simply
added if no such library unit exists.

" A subprogram body replaces any existing body of a (generic or non-generic) subprogram specification
with the same name. If no such specification exists, an implicit specification is derived from the body and
entered into the library. If such a specification exists, but the body does not match the specification in the
sense of Section 6.3 of the LRM, error messages are issued. If any library unit other than a subprogram
specification exists with the same name, the new implicit specification replaces that library unit.

* Generic package specifications and subprogram specifications act as explicit specifications, i.e., cor-
responding bodies must match their specifications. If a generic unit is instantiated, a dependency is created
on the generic body.

" Generic instances compiled as library units are treated in the same way as their non-generic counterparts.

" When an instanoation replaces the body of a library unit. all secondary units of that library unit are now
obsolete and are deleted.

* A subunit with a parent unit containing an appropriate body stub existing in the library replaces any
subunit with the same subunit name, comprised of the stub's name and the name of the ancestor unit. or is
simply added, if no such subunit exists. A unit containing stubs will only be entered into the library if the
simple names of all its stubs are unique for all stubs derived from its common ancestor. An error message
is issued if no parent unit exists in the library, the parent unit exists but does not have a relevent stub, or the
parent unit and body stub exist but the subunit does not match the stub or its specification.

" When the parent unit of a subunit is recompiled and the parent no longer contains a stub for the subunit.
the subunit, which is now obsolete, is deleted.

3.4. FILES PRODUCED OR USED BY THE COMPILER
Files with the following extensions are contained in the standard packages directories or can be created by

compiling or linking an Ada program; the file name is the name of a compilation unit, but may be compressed to
conform to length limitations of VMS file management:

ASM The assembly language file produced by compiling an Ada unit body with
/MACHINECODE.

BOD Representation of the body of a generic, and/or the visibility information available to
any subunits. body-name. BOD is read when compiling a program that instantiates
body.name, or is a subunit of body-name.

3-4 BETA RELEASE 1.0

COPW..G ADA PROGRA.MS

DI Representation of a unit specification. wnit-name. D. is read during the compilation of a
program that does a "with unit-name".

LIS A listing produced by the Ada compiler.

STOF The object file produced by compiling an Ada unit specification with
/MACHBNECODE.

TOF The object file created by compiling an ADA unit body.

XRF Cross reference files that relate Ada names with corressed and disambiguated names
used in the assembly language file.

XTOF Executable image produced by the ALBC3 0 L.NK command.

The following are the extenstions used for files that are created temporarily during the linkingcompiling
process:

ETOF Object file containing calls for elaboration of the program

TMP Temporary file used when creating .ASM files

Additionally, temporary files are created during compilation that have the same file extensions listed above, but
also have a unique 8 digit hexadecimal number concatenated to the extension. These files will appear in the
directory only if a link or compilation is abnormally terminated, and should be deleted by the user.

Files having the following extensions are controlled by the librarian and compiler: DI. 300, STOF, and TOF.
The user should not use these extensions for any other purpose. The ALBC3 0 DELETE command will automati-
cally delete these files when the respective unit is deleted from the library. If the user deletes these files in any
other way, subsequent invocations of the compiler or librarian will have unpredictable results, including fatal
crashes. We therefore advise that the user never delete these files by operating system commands.

3.5. THE CROSS REFERENCE MAP OF LINKNAMES

A cross reference of symbolic names to linknames is generated with ti., ualifier /CROSS .. F-,R.NCZ 1o
the ADAC30 command. The cross-reference file has the extension .XRF; the file name is that of the compiled
unit, but possibly compressed to match VMS restictions, as shown in the example below.

For longer unit-names, the cross reference file generated may not have an immediately obvious name. in
order to flid it4 it may be necessary to search the current working directory for a recently produced file with
extention XP.F.

Example:
File CREXAMPLE SPEC. ADA

package THISISALONG PACKAGE NAME 1S
package ANOTHER_LONG PACKAGE NAME is

procedure LONG_ ROC-EDURE NAME THATWILL HAVESHORTLINKNA.E;
end ANOTHER LONG PACKAGE NAME;

end THIS IS A LONG_ PCKAGE NAME;

File CREXAMP LE BODY. ADA
package body THISIS A LONG PACKAGE NAME is

package body ANOTHER LONG PACKAGENAME is separate;
end THIS IS A LONG PAC'AGE NAME;

File CREXAMPLE. SEP

BETA RELEASE 1.0 3-5

USER M.ANUAL FOR TARTAIN ADA VMS C30

(7>
separate (THIS IS A LONG PACKAGE NAME)
package body ANOTHER LONG PACXAGE NAME is

procedure LONGPROCEDURE-NAME_TH ATWILL_HAVE_SHORT_LNKNAM,4.E is
begin

null;
end LONG PROCED URENAME_T.HATWILL HAVESHORT_ UNKNAME;

end ANOTHERLONGPACKAGENAME:

The commands:
S ADAC30 CREXAMPLE SPEC.ADA
S ADAC30 CREXAMPLE BODY.ADA
$ ADAC30/CROSS REFERENCE CREXAIPLE. SEP

produce the file THSSLNGPCXGNMSNTHRLNGPCKGNMEOO. XF F which appears below:

Linkname Cross Reference Map thsslngpckgnmSnthrlngpckgnme001.xrf

this is a long_.packagename->xxthsskgnm001 at 0
this is a longpackae_nameYthis is a longackae_name>thisi.s_a_long
_packagenameY00 at 1
thi s is a ong package_nameYanotherlong_package_nameYanother_longpackage
name->another_long_packagenameYO at 2

th is is a longpackage_nameYanother_long_packagenameY!ong_procedurename
_thaE_willhave_short-linkname->xxthsskgnmO iYlngprcdtlnknmY00 at 3

In the above cross reference file:

* The fust line represents the name for the elaboration code for the package
THISISALONGPAC.AGE NAME. The symbols representing the specification and body have
respectively YDECI-ARE and YBODY postpended.

- The second line is the name of the data segment for the package THIS_ sA_LONG_ACKAGE NAME.

" The third line is the name of the data segment for the package ANOTHERLONGPACK.AGENAME.

" The name.for the LONG_PROCEDURE_NAME_THAT WILL_KAVE_SHORT_L:.NKNAME procedure is on
the fourth line.

" The fifth line is the name for the elaboration variable for the procedure
LONGPROCEDURE_NAME_THAT_WILLHAVESHORTLNKNA ME. Ada rules require that the body
of a subprogram is already elaborated before it can be called. If it is not already elaborated the exception
PROGRAMERROR must be raised. For each subprogram that may require an elaboration check the
compiler generates a variable that is used to record that the body of the subprogram has been elaborated.
The name of the elaboration variable is generated by postpending YGOTO to the name of the subprogram.
The elaboration variable name is then subject to the same compression algorithms as the rest of the
symbols in the program.

The VMS command DIR/DATE *.XRF will help you locate the cross reference listing. In order to view the
contents of the cross reference file, make sure that your terminal is set to wrap around mode. The identifier
appearing at the left is the identifier that appears in the Ada source code. The name to the right of the '->' is the
linkname that is supplied for that identifier to the Tartan Linker. The "at <number>' gives the line number in
the source code where the identifier is found. A Cross Reference Map can be used to verify Lhat there are no
conflicting linknames in a program library that uses subprograms wriaen in another language (see Section 5.1.2-2
that discusses the pragma FOREIGNBODY). It is also usefu for assembly-level debugging.

3-6 BETA RELEASE 1.0

CONPU-NG ADA PROGRAMS

3.6. COMPILER AND LIBRARY DIAGNOSTIC MESSAGES
The compiler issues diagnostic messages that appear at your terminal and in the optional compiler-generated

listing. Most messages issued by the Tartan Ada Compiler contain a reference to the Ada LRIM section and
paragraph relevant to the error. This section explains the kinds of diagnostic messages the compiler generates,
how the compiler attempts to deal with problems that caused the messages and how you should go about
correcting a program.

A cot- ?rehensive listing of all the messages the compiler can issue is contained in Appendix Section A. 1.
Messages in the range 6000 to 6999 are issued by the library, not the compiler.

3.6.1. Message Severity Levels
Every message issued by the compiler is assigned a severity level that indicates how serious the problem is.

There are four message categories.

1. A fatal error is serious enough to suspend compilation immediately after the error is discovered. This is
the only class of error that inhibits further analysis of the source program. An example of a fatal error
message is:

Fatal 6801: <library administrationfile name> is incompatible
wi:h this version of the library.

2. An error is serious enough to prevent the generation of object code. but the compiler attempts to
recover from the error and continues checking the source for additional errors. An example of an error is:

Error 2060: This record field has already been assigned
in the aggregate (4.3 (6))

3. A warning does not stop the compiler from generating object code, but may still be an indication of
a programming error. When a warning occurs, the code generated may not be what you intended. An
example of a warning is:

Warn 4001: Elaboration of this subtype will raise
constraint error at runtuime (3.3.2).

4. An informational message provides you with additional information when you use some ibrary
commands. See, for example, Section 4.6. Informational messages are not issued by the compiler. An
example of an informational message is:

Info 6011: The files required for linking by <un kind>
<unit name> are consistent (0.3).

3.6.2. Message Formats
The format of messages appearing on the standard error output and in the listing file is similar. Here is an

example:

51 s2 : string(.. di crim);61 32 :string(l . 2 * discrim);

1 Error 2204: A discrimnanant may not be used in this
expression (3.7.1 (6))

71 end record;

The numbered lines in the example are lines from the source program. The source line in question is followed by
the messages and pointers to the exact location of the problem.

On the terminal, horizontal lines are used to separate messages coming from different parts of the source
program, for example:

BETA RELEASE 1.0 3.7

USER MANUAL FOR TARTAN ADA VMS 00

51 s1 : string(l. discrim);
61 s2 : string(. .. 2 * discrim);

"1
1 Error 2204: A discriminant may not be used

in this expression (3.7.1 (6))
71 end record;

141 null;
151 when numericerror I constraint error ->

^I
2. Error 3112: A given exception may only appear once

in a handler (11.2 (5))
161 null;

In a listing file, a message chain accompanies each diagnostic message. The message chain indicates where
in the progmm the next and previous messages occur, for example:

Ada C30 Beta 1.0 Copyright 1989, Tartan Laboratories Incorporated

First diagnostic is on line 6

11procedure sample program is
21 subtype small int is integer range 1 .. 10;
31
41 type rec(discrim : smallint) is record
51 sl string(l .. discrim);
61 s2 : s3tring(l .. 2* discrim);

' 2I Error 2204: A discrimuinant may not be used in this
expression (3.7.1 (6))

" Next diagnostic is on line 15
71 end record;
81
91 x : te (5);

101 begin
ill x :- (6, "12345", "abcde");
121 exception
131 when constraint error ->
141 null;
151 when numericerror I constrainterror ->

"1

"' Previous diagnostic was on line 6
"" 2. Error 3112: A given exception may only appear once

in a handler (11.2 (5))
161 null;
17Iend sample program;
181

* Last diagnostic was on line 15

Errors: 2, Warnings: 0

The message chain is especially helpful when working with large listings.
Whether on the standard error output or in a listing file, the list of messages is followed by a summary line

containing a count of the number of errors in each severity class, for example:

? Errors: 2, Warnings: 2

B

3-8 BETA RELEASE 1.0

COIMUD ADA PROGRAMS

3.6.3. Listing Summary
When a listing f'de is produced, the numbered listing pages are preceded by a summary page that presents data

and statistics about the compilation. The following is an example of the summary page.
Listina Sunmarv Renort

Date of listing: 22-JUL-1989 17:38:14.00

Source file name: USERO1:[ADA.VMS]FOO2.ADA;2
Source file lines: 52
Compiled by: JONES
Command line used: ADAC30/LIST-ALWAYS FOO2.ADA
Code size produced: 154 bytes
Data size produced: 0 bytes

Elapsed real time: 00:00:21.80
Elapsed CPU time: 00:00:06.95
Buffered I/O: 253
Direct I/O: 236
Page faults: 1213

3.6.4. Message Generation

The Tartan Ada Compiler has many internal phases, any one of which can issue diagnostic messages.
Messages are collected in memory until the time comes to generate the message listing. At that time, all the
messages are sorted by their position in the source program and are printed.

When you examine a program listing containing many messages, remember that the order in which the

messages appear in the listing is not necessarily the order in which the messages were generated. This fact may
be important when one error causes another. It is advisable to start correcting your program according to the
messages having the lowest numbers and work towards the higher numbers. making an intermediate compilation
if necessary.

3.6.5. About Syntax Errors and Recovery
The Tartan Ada Compiler incorporates a parser which is capable of analyzing and correcting all syntactic

errors in the source program. This section describes the various error messages that may be issued by the parser.
When a syntax error is detected, no object code is generated.

The parser divides the source program text into lexical elements, or tokens, such as identifiers, reserved
words, constants, etc. When the parser encounters a token that it does not expect, it issues an error message that
indicates the position at which the error was detected and the action that was taken to correct the error. Here are
some examples of the recovery actions:

In the example below, the trailing "" does not match any of the valid tokens of Ada and so the parser
deletes it.

llprocedure bad-syntax is
21 subtype byte is integer range 0 .. 255; 5

.*w I Error 104: Ill-formed token deleted.
31 x : integer;

The compiler also deletes a token occupying an inappropriate place. In the following example, it deletes the
superfluous token "while".

5 I begin
61 for while i in I .. 10 loop

* 1 Error 121: Parse error; token deleted.
71 x :- x + 1;

BETA RELEASE 1.0 3-9

USER MANUAL FOR TARTAN ADA VMS C30

In the following example, the missing symbol ";" is inserted, and parsing continues undisturbed.
41 i : integer
51 b : boolean;

. I
1 Error 120: Parse error; token ";" inserted.

6 I begin
In the following example, the syntactically incorrect symbol ":" is replaced by the proper symbol ";".

171 end loop;
181 x :- 15:

"1
1 Error 122: Parse error; this token deleted, ";" inserted.

191

3.6.5.1. Multi-Token Insertion
The parser may also insert several tokens in an attempt to repair the const'ucts whose closing tokens (e.g.,

"ena if; ") are missing. An example of this recovery is:
101 end if;
III end loop;

^1,2,3
** 1 Error 120: Parse error; token "if" inserted.
* 2 Error 120: Parse error; token ";" inserted.
* 3 Error 120: Parse error; token "end" inserted.
12 lend badproc;

In this example an additional "end if;" was missing. Note, however, that the maximum number of
tokens that can be inserted in succession is limited.

3.6.5.2. Complex Recovery Strategy
If all the simple fix-up and multi-token insertion techniques above are unsuccessful, the parser attempts a

more massive correction by deleting many successive or preceding phrases of the program. Foe example,
51 y :- 6; case bad case is

6* where x-v -> x :- 3;^I
" 1 Error 123: Parse error; ill-formed "<statement>".

7* when 2 :- x - 5;
The caret (A) locates the place where the parser detects an error. The compiler indicates the elided portion of

the source program by underlining with asterisks. In the first (and possibly the last line), only the tokens deleted
are underlined. The lines following the first line are not underlined, but when the entire line is deleted, the
symbol after the line number (e.g., lines 6 and 7) changes from a vertical bar (I) to an asterisk. (The above
statement contained three errors. The closing "end case; " was also deleted.)

In cases like the above example, when the parser has deleted more than one token, the error message is
Error 123: Parse error; ill-formed "<name>".

The name contained within the angle bracket pair is that of the grammatical element that the parser expected to
find in this position. Occasionally, the deletion of tokens starts at a point textually preceding the reported error
because no legal interpretation of an enclosing construct can be found due to the error within the consuicL

Under rare circumstances, you may see an error message
Error 127: Parse error; unexpected end-of-file.

pointing to a token within the program, with the rest of the program marked as deleted. This message points to
the position in the program where the parser detected a syntax error. It indicates that, despite all attempts, the
error recovery was unsucessful until the end-of-rile was reached. In this case, correct all the errors reported and
examine the program for missing keywords that end complicated syntactic constructs. also, especially examine
the few lines that precede and follow this message for syntactic errors.

3-10 BETA RELEASE 1.0

Chapter 4

The Ada Program Library

The Tartan Ada VMS C30 Program Librarian (ALBC30) implements the Ada Language requirement for
separate compilation and dependency control. The program library directory holds all necessary compilation
units, including packages that are part of the application under development and any standard packages such as
those for I/O.

The library administration file is a single file ADA. DS chat records the dependencies among these units and
their compilation history.

The term Ada program librarian refers to executable code that manipulates the library; that is. subcommands
of the library command ALBC30 that are discussed in this chapter.

A compilation unit in a library (library unit or secondary unit) is identified by its Ada-name, which is either a
simple name (an identifier) or the simple name of a subunit and the name of its ancestor. More information about
Ada compilation units and program libraries is given in Chapter 10 of the Ada Language Reference Manual. The
library administraton file does not contain the text of compilation units; it contains only references to files that
contain the compilation units in their source and compiled forms.

4.1. THE ALBC30 COMMAND

The ALBC30 command invokes the Ada Program Librarian to perform the following operations:

* Create an Ada program library
* Delete unit(s) from an Ada library or delete the entire library
* Check the closure of a library unit
* Describe the status of a library unit by generating a dependency graph
* Insert a non-Ada object into the library as the body of a package.
* Link an executable image.

The format of the ALBC30 command is

$ ALBC30 subcommand[/qualifler...] [parameter...] [Iquai er...]

Each operation is requested through a subcommand. All AL3C30 subcommands except CE.ATE assume
that the user's Ada library exists in the current directory. The following sections discuss the subcommands and
their appropriate qualifiers and parameters.

4.2. THE CREATE SUBCOMMAND
The CREATE command creaes an initialized Ada library database file. ADA. DB, and places it in a directory

that has been created to hold the library database file and files required by the library, i.e.. separate compilation
and all compiler-generated iles. Standard system and Ada I/O packages are placed in the library directory and
references to them are recorded in ADA. DB.

The format of the CREATE command is

$ ALBC30 CREATE fdirectory-specl

The parameter directory-spec specifies the name of the existing subdirecmry in which the library is to be
located and must be supplied only if the library directory is not the current directory. If the directory specifica-
tion supplied is not an existing directory, a message will be issued indicating that the directory was not found and
the library files will not be created.

BETA RELEASE 1.0 4-1

USER MAINUAL FOR TARTAN ADA VMS C0

The directory specification must contain the name of or a logical name for an existing directory. A device
name is optional. If a subdirectory is used. the names of the directory levels should be separated with periods.
No wildcard characters are allowed in the directory specification.

4.3. THE DELETE SUBCOMMAND

The DELETE command deletes the specified Ada entity, depending upon the supplied parameter. The
operations that may be performed are:

" Remove the specification, body and all subunits of a library unit from the library
" Remove the body of a library unit and all its subunits from the library
* Remove a subunit from the library
" Remove an enire library

The format of the DELETE command is

$ ALBC30 DELETE t/qual fi er...] [Ada-name... I directory-spec]

One or more Ada-name(s) or a directory-spec may be supplied as parameter(s). A qualifier may be supplied to
further specify the unit(s) to be deleted from the library or to request an additional action to be taken during the
deletion process.

The wildcard characters of "" and "7" are recognized in an Ada-name. The character "*" matches any
sequence (including the empty sequence) of characters in an Ada-name. The character "%" matches any single
character in an Ada-name. Wildcards are used to build regular expressions. When one of the qualifiers /BODY,
/ SPEC, or / SUBUNIT is used, and a wildcard is present in the parameter supplied, every compilation unit in the
library whose name matches the regular expression and is included according to the qualifier will be deleted.
Wildcards are not allowed with the /LIBRARY qualifier.

The foUowing command qualifiers may be used: (r

/BODY Deletes the body and all subunits that have this body as an ancestor. The Ada-name
supplied as a parameter must be a library unit name. All compiler-generated files are
deleted with the unit. Compiler-generated riles do not include those created by the
librarian with the LINK subcommand. /BODY is the default if no qualifier is supplied.
Format:

S ALBC30 DELETE/BODY library-urut-name

/ LIBRARY Deletes the entire library identified by a directory name supplied as a parameter, includ-
ing all compiler-generated friles and the file ADA. DB. No wildcards may be used in the
directory name. Format

$ ALBC30 DELETE/LIBRARY directory-spec

If the library to be deleted is in the current working directory, the command may be
given as:

$ ALBC30 DELETE/LZBRARY (]

/ LOG Causes a message to be written to the standard output device when a unit is deleted. The
/LOG qualifier may be used in combination with any other qualifier.

/SPEC Deletes the specification, body and all subunits that have this specification as an ances-
tor from the library. The Ada-name supplied as a parameter must be a library unit name.
All compiler-generated files are deleted with the unit. Format:

$ ALBC30 DELETE/SPEC library-unit-name

/SUBUNIT Deletes the subunit named and all-of its subunits, in a transitive manner. Two
Ada-names must be supplied as parameters: the ancestor and the simple name of the
subunit to be deleted (LRM 10.21. Format:

$ ALBC30 DELETE/SUBUNIT ancestor simple-name

4-2 BETA RELEASE 1.0

THE ADA PROGRAM LBRARY

Example:
To delete:

separate (ONE. TWO. THREE.FOUR) -- unit ONE is ancestor
procedure FIVE is
begin

null;
end FIVE;

from the library, the command is
ALBC30 DELETE/SUBUNIT ONE FIVE

Example:
The following example illustrates the use of /DELETE with several qualifiers and wildcards where ap-

propriate.
For a library that contains the following units:
Package Spec Radar Screen
Package Body Radar-Screen
Package Spec Radar Detector
Package Body Radar-Detector
Subprogram Spec A
Separate Subprogram body Radar Screen.RangeRings
Separate Subprogram body Radar Screen.Object
Separate Subprogram body Radar Screen.Object.Size

ALBC30 DELETE/SPEC *
deletes all units in the library, including standard packages, Tartan runtime packages,
support packages, and the file ADA. DB. Thus, when used with DELETE, / SPEC is a
synonym for /LIBRARY

ALBC30 DELETE/SPEC %
deletes subprogram Spec A

ALBC30 DELETE/SUBUNIT RADAR SCREEN
deletes the last three units listed

ALBC30 DELETE/BODY RADARSCREEN
deletes package body radarscreen as well as the last three units listed

ALBC30 DELETE/SUBUNIT * *
deletes the last three units listed

ALBC30 DELETE/SPEC RADAR*
deletes all units except Subprogram Spec A

4.4. THE DESCRIBE SUBCOMMAND
The DESCRIBE command describes the status of a unit by displaying its dependency graph. The information

shown includes the name, type, time of compilation, state of residence (local or foreign), source and object file
specifications, dependencies (if any), and subunits (if any).

The format of the DESCRIBE command is

$ ALBC30 DESCRIBE C/quali rer...] (Ada-name... I
where one or more Ada-name(s) supplied as parameters specify the library unit or subunit to be described. A
qualifier may be supplied to further specify the unit(s) w be described or to request an additional action to be
taken as part of the process.

The wildcard characters of "*" and W are recognized in an Ada-name. The character "*" matches any
sequence (including the empty sequence) of characters in an Ada-name. The character "%" matches any single
character in an Ada-name. Wildcards are used to build regular expressions. When one of the qualifiers /BODY,

BETA RELEASE 1.0 4-3

USM MANUAL FOR TARTAIN ADA VMS C30

/SPEC, /ANY or /SUBUNIT is used. and a wildcard is present in the parameter supplied, every compilation unit
of the specified category in the library whose name matches the regular expression will be described. Addition-
ally, the qualifier /ALL can be used with no parameters.

The following command qualifiers may be used:

/ANY Describes both the specification and body units for the specified library unit, but will not
describe subunits. The Ada-name supplied as a parameter must be a library unit name.
/ANY is the default if no qualifier is supplied. Format:

$ ALBC30 DESCRIBE/AWY library-unit-name

/ALL Describes all library units and subunits. No Ada-name should be specified. Format:
$ ALBC30 DESCRIBE/ALL

/BODY Describes only the body unit for the specified library unit. The Ada-name supplied as a
parameter must be a library unit name. Do not use in conjunction with /SPEC; to get
descriptions of both body and specification, use /ANY. No information about bodies
resulting from generic instantiations is given when the /BODY qualifier is given. To get
such information use /SPC or /ANY. Format:

$ ALBC30 DESCRIBE/BODY library-unit-name

/ OUTPUT[=file-spec]
Places the output of this command in the file specified. If no file has been given, output
defaults to a file having the name DEPENDENCY. TXT. The default output device is the
user's terminal or log ile (if invoked from a batch job).

/SPEC Describes only the specification unit for the specified library unit. The Ada-name
supplied as a parameter must be a library unit name. Do not use in conjunction with
/BODY; to get descriptions of both body and specification, use /ANY. Format:

$ ALBC30 DESCRIBE/SPEC libray-unit-name

/SUBUNIT- Describes a subunit which must be identified by two parameters, the name of the ances-
tor and the simple name of the subunit CU.RM 10.2]. Format:

$ ALBC30 DESCRIBE/SUBUNIT ancestor simple-name

Example:
To describe:

separate (ONE.TrWO.THREE.FOUR) -- unit ONE is ancestor
procedure FIVE is
begin

null;
end FIVE;

the command is
ALBC30 DESCRIBE/SUBUNIT ONE FIVE

Examples:
1. The ALBC30 DESCRIBE/SPEC command displays the status of the specification of the library unit

adatime.
$ ALBC30 DESCRIBE/SPEC adatime

displays

4-4 BETA RELEASE 1.0

THE ADA PROGRAM ..BRARY

Name: adatime
Type: Package Spec
Time: 2-AUG-1988 15:47:05.00
Residence: local
Source File Name: SRC:ADATIME.ADASPEC
Symbol File Name: adatime.di
Dependencies: none

2. TheALBC30 DESCRIBE/BODY command displays dhe status of the body of the library unit ada tie.
$ ALBC30 DESCRIBE/BODY adatime

displays
Name: adatime
Type: Package Body
Time: 2-AUG-1988 15:47:05.00
Residence: local
Source File Name: SRC:ADATIME.ADABODY
Cbject File Name: adatime.TCF
Dependencies:

Type: Package Spec
Name: adatime

Subunits: none

3. The following example illustrates the use of /DESCRIBE with wildcards in a library containing subunits.
For a library tt contains the following units:
Package Spec Radar Screen
Package Body Radar-Screen
Package Spec Radar-Detector
Package Body Radar-Detector
S ubprogram Spec A
Separate Subprogram body Radar Screen.RangeRings
Separate Subprogram body RadarScreen.Objec:
Separate Subprogram body Radar-Screen.Objec.Size

ALBC30 DESCRIBE/ALL
Will describe all of the compilation units in the library

ALBC30 DESCRIBE/ANY *
Will describe die first five units

ALBC30 DESCRIBE/SUBUNIT * *
Will describe the last ft units

ALBC30 DESCRIBE/ANY RADAR*
Will describe die first four units

ALBC30 DESCRIBE/SUBUNIT RADAR* SI*
Will describe RadarScreen.Object. Size

ALBC30 DESCRIBE/ANY %
Will dcscribe Subprogram Spec A

ALBC30 DESCRIBE/SUBUNIT RADAR DETECTOR *SIZE
Will not describe any unit

BETA RELEASE 1.0 4-5

USER MANUAL FOR TARTAN ADA VMS C30

4.5. CLOSURE
Closure is defined as the total set of compilation units upon which a unit is dependent. Dependency is

conveyed by means of the context (with) clause; a library unit in a context clause of a compilation unit must be
compiled before the compilation unit. Additionally, a library unit must be compiled before its corresponding
body (secondary unit), and a parent unit must be compiled before any of its subunits. These dependencies are
transitive; that is, a library unit in the context clause of a library unit in a context clause of a compilation unit is in
the compilation unit's closure, and so on. In other words, the collection of units that must be compiled before a
compilation unit is the closure of that compilation unit.

Another cause for dependencies arises from generics. A compilation unit that depends on a generic unit or a
unit that contains generics is dependent on the body of that unit, if instantiaions of the generic constucts occur.
While normally only library and parent units can be in the closure of a compilation unit, this special situation can
cause other secondary units to become part of the closure of a compilation unit (See also Section 5.9.2).

The closure of a compilation unit is consistent if all units in the closure of the compilation unit are in the
library, i.e., they have indeed been compiled in an order that does not violate the partial ordering determined by
the dependency relationships. Compilation units may be compiled in any order that is consistent with this partal
ordering.

The fundamental rule to be remembered is: A unit can be compiled only if its closure is consistent.
Examples:
1.

-- Specification for package MODE3
package MODE3 iS

end MOOE3;

-- Specification for package FOE
with MODE3;
package FOE is

end FOE;

-- Specification for package MODE3
with FOE;
package MODE3 is

end MODE3;
The resubmission of package MODE3 is rejected. A circularity exists between the two package specifications that
violates the dependency rules given above:

" MODE3 has FOE in its context clause, which means FOE must be compiled before MODE3.

" FOE, in turn, has MODE3 in its context clause, which means mODE3 must be compiled before FOE.

In other words, MODE3 would have to be compiled before MODE3--an impossiblity.

2. If the following units are submitted to the compiler in the order shown, the closure of package body
CROSS SECTION is consistent.

4-6 BETA RELEASE 1.0

THE ADA PROGRAM LBRARY

-- Specification for package FOE
package FOE is

end FOE;

-- Specification for package FRIEND
package FRIED is

end FRIEND ;

-- Specification for package CROSSSECT:ON

package CROSSSECTION is

end CROSSSECTION;

-- Body for package CROSS-SECTION
with FRIEND;
with FOE;
-- NOTE: The order expressed in the context clause is irrelevant
-- to the cornp ilation order.
package body

CROSSSECTION is

end CROSS-SECTION;

At this pont, a recompilation of package FOE would cause the closure of package body CROSS_SECTION to
become inconsistent.

Tbefull closure of a unit is defined as the set of units in the unit's closure, their corresponding bodies and all

of their subunits, and the full closure of each of these units. Establishing the full closure is recursive because Ada
allows secondary units to have dependencies that are in addition to the dependencies of te corresponding library
unit or parent unit. Thus a secondary unit may bring additional library units and their bodies into the full closure.

The full closure of a compiladon unit is said to be consistent if all the units in the full closure of the
compilation unit are in the library and have been compiled in an order that does not violate the partial ordering
determined by their respective closures.

The fundamental rule to be remembered is: A unit constituting a main program can be linked only if it has
been successfully compiled and its full closure is consistent. For a successful compilation of the unit only a
consistent closure, but not a consistent full closure is required.

Example:

The full closure of the unit CROSS SECTION is consistent because all required compilation units have been

compiled into the library in a correct order.

BETA RELEASE 1.0 4-7

USE MANUAL FOR TARTAN ADA VMS C30

-- Specification for package FRIEND
package FRIEND is

end FRIEND,

-- Body for package FRIEND
package body

FRIZND is

end FRIE NO;

-- Specification for package FOE
package FOE is

en~d FOE;

-- Body for package FOE
package body

FOE is

end FOE;

-- Specification for package RADAR DETECTOR
package RADARDETECTOR is

end RADARDETECTOR;

-- Body for package RADARDETECTOR
package body

RADAR DETECTOR is

-- Specification for package CROSS SECTION
package CROSS_SECT:CN is

end CROSSSECT:ON;

-- Body for package CROSS SECTION
with FRIEND:
with FOE;
package body

CROSSSECTION is

end CROSS_SECTION;

4.6. THE CLOSURE SUBCOMMAND
The CLOSURE command checks the closure or full closure of a unit by displaying the partial ordering of its

closure.
The format of the CLOSURE command is

$ ALBC30 CLOSURE([qualifier... I (Ada-name... I
where one or more Ada-name(s) supplied as parameters specify the unit or subunit whose closure is to be
checked. A qualifier may be supplied to further specify the unit(s) to be described or to request an additional
action to be taken as par of the process.

The wildcard characters of "*" and % are recognized in an Ada-name. The character "'" matches any
sequence (including the empty sequence) of characters in an Ada-name. The character "%" matches any single
character in an Ada-name. Wildcards are used to build regular expressions. When one of the qualifiers / BODY,

4-8 BETA RELEASE 1.0

THE ADA PROGRAM LMR.ARY

/SPEC. /FULL or /SUBUNIT is used. and a wildcard is present in the parameter supplied, the closure or full
closure of every compilation unit of the specified category in the library whose name matches the regular
expression will be checked.

The foilowing command qualifiers may be used:

/BODY Checks closure only on the body unit named by the Ada-name parameter. The
Ada-name supplied as a parameter must be a library unit name. Format:

$ ALBC30 CLOSURE/BODY library-unt-name

/FULL Checks the full closure (linking closure) for the specificauon unit named by the
Ada-name parameter. The Ada-name must be a library unit name. Format:

$ ALBC30 CLOSURE/FULL library-uni-name

/ OUTPUT t=file-spec]
Places the output of this command in the file specified. If no file has been given, output
defaults to a File having the name CLOSURE. TXT. The default output device is the
user's terminal or log file (if invoked from a batch job).

/ SPEC Checks closure only on the specification unit named by the Ada-name parameter. The
Ada-name must be a library unit name. /SPEC is the default if no qualifier is supplied.
Format:

$ ALBC30 CLOSURE/SPEC library-unit-name

/ SUBUNIT Checks closure of a subunit which must be identified by two parameters, the name of the
ancestor and the simple name of the subunit [LRM 10.21. Format:

$ ALBC30 CLOSURE/SUBUNIT ancestorsimple-name

Example:
To check closure for

separate (ONE. WO.THREE.FCUR) -- un4t CNE is ancest: _
procedure F:VE is
begin

null;
end FIVE;

the command is

ALBC30 CLOSURE/SUBUNIT ONE FIVE

Examples:
1. The ALBC30 CLOSURE/SPEC command displays the status of the specification of the library unit

D0SPLAY TARGETS.

$ ALBC30 CLOSURE/SPEC display_targets

displays

BETA RELEASE 1.0 4-9

USER MA-NUAL FOR TARTAN ADA VMS C30

Closure partial ordering at 16-JUL-!987 10:28:32.00 for
implicit Subprogram Spec displaytargets

Error Type Unit

Package Spec paintscreen
Package Spec cross section
Package Spec radar-detector
implicit Subprogram Spec display_cargets

Info 6011: The files required for compilation by implicit
Subprogram Spec display_targets are consistent (10.3).

2. The ALBC30 CLOSURE/FULL command displays the partial ordering of the full closure of the body of
the library unit DISPLAYTARGETS in a situation where the package body for PAINTSCREEN is obsolete.

S ALBC30 CLOSURE/FULL display__targets
displays

Full Closure partial ordering at 16-JUL-1987 10:28:32.00 for
implicit Subprogram Spec display targets

Error 6005: recommilation of Package Spec paintacreen has made
dependent Package Body paintacreen obsolete (10.3 (5)).

Error Type Unit

Package Spec paintscreen
Package Spec cross section
Package Spec radar-detector
impllicit Subprogram Spec displaytargets
Package Body paintscreen
Package Body crosssection
Package Body radar detector
Subprogram Body display_targets

Info 6009: The files required for linking by implicit Subprogram
Spec displaytargets are not consistent (10.3).

4.7. THE FOREIGN_3ODY SUBCOMMAND

A subprogram writen in another language can be called firom an Ada program. Pragma FOREIGN CODY is
used to indicate that the body for a library unit that is a non-generic package specification is provided in the form
of an object module. This pragma allows subprograms within that package to be called from an Ada program.
See Section 5.1.2.2 for a description 7f the use of and restrictions on pragma FOREIGN BODY.

Prior to successful linkage, the body of Nhi. respective package must be provided to the library. The
FOREGN BODY command allows the programmer to introduce a reference to the compiled bocy of a package
(in an object file) into the library. The format of the FORE:GN BODY command is

ALBC30 FOREIGN BODY Ada-namefile-spec

where the parameter Ada-name specifies the unit within the library for which a body is being provided. The (.

parameter file-spec specifies the name of compiled package body or object library of subprogram bodies to be

4-10 BETA RELEASE 1.0

THE ADA PROGRAM LMRARY

used. A reference to this file specification (by means of the supplied Ada-name) will be entered into the current
Ada library. The file specification must contain the file name and type. No wildcard characters are ailowed in
the file specification.

If a specification for a foreign body is deleted from the program library, the database entry for the body is also
deleted. The object file is not deleted.

Example. The ALBC30 FOREIGNBODY command replaces the standard package adatime with a refer-
ence to a timing module written in FORTRAN.

$ ALBC30 FOREIGN_.BODY adatime USERO1:EROJECr]lfortrant4-me.TOF

A pointer for this package in the file USER01: [PROJECT] f ort:an_t me. TOF has now been inserted in the
ADA. DB file.

4.8. THE LINK SUBCOMMAND

The LINK command checks that the unit within the library specified by the user has the legal form for a main
unit, checks all its dependencies, finds all required object files, and links the main program with its full closure
(See Section 4.5) producing an executable image. The format of the LI1NK command is

S ALBC30 LINK Cqualifier...1 library-unt-name [/qualifter...]

where the parameter library-unit-name specifies the unit in the library to be made the main program and must be
supplied.

The ALBC30 LINK command calls the Tartan Linker which is documented in Object File Utilizies for the
Tartan Ada VMS C30, Chapter 2. The output file from the Tartan linker is library-unit-name. XTOF.

The following qualifiers may be used with the ALBC30 LINK command:

/ALLOCATIONS Produce a link map showing the section allocations. This qualifier may be used only if
the Tartan Tool Set has been selected when creating the library (See Section 4.2).

/CONTROL-Jfle-spec
Specifies a file used to pass instructions and qualifiers to the Tool Set Assembler and
Linker programs. This file may be used to specify what Toolset components, commands
or versions of components ae to be used in building the final program. No wildcard
characters are allowed in the file specification. See Tartan Ada Object File Utilities
Manual, for information in linker control files.

/EXECUTABLE C-file-spec] Controls the name of the executable image created by the Tool Set linker. The
default file name is that of the main program. No wildcard characters are allowed in the
file specification.

/KEEP Retain the elaboration order and link control files after the linking operation is complete.
The program may then be relinked using The Tartan Linker, TLINK. independent of the
librarian (See The Tartan Object File Utilities Manual, Chapter 2). This method is
primarily a debugging tool. The user assumes full responsibility for the consistency of
the program when it is used instead of using the ALBC30 LINK command.

,P Produce a link map containing all information except the unused section listings.

/ RESOLVEMODULES
Include all sections from the specified modules in the link. This action corresponds to
the "usual" behavior of other linkers. Some linker analysis is eliminated at the expense
of a (possibly) larger output module.

/SYMBOLS Produce a link map showing global and external symbols.

/UNUSED Prodic: a link map showing the unused sections.

BETA RELEASE 1.0 4-11

.4

